PROGRESS IN
POLYMER SCIENCE

o

ELSEVIE Prog. Polym. Sci. 24 (1999) 329-377

The ten classes of polymeric phase transitions: their use as models
for self-assembly

E.A. Di Marzio

Polymers Division, National Institute of Standards and Techniques (NIST), Gaithersburg, MD 20899, USA

Abstract

A brief overview of the ten classes of polymer phase transitions is given. In each case the basic physics
underlying the transition is given. Special attention is devoted to the polymer threading a membrane transition
(PTM) since it allows us to understand the reason for the occurrence of the five classes of transition unique to the
isolated polymer molecule. They are the PTM transition; the helix to random coil transition; adsorption; equili-
brium polymerization/one-dimensional crystallization; the collapse transition. The five classes of transitions of
interacting polymers are liquid crystals/plastic crystals; glasses; crystals; liquid-liquid polymer transitions;
soaps—block copolymers/membranes—micelles-vesicles. A classification is made of the coupling of these transi-
tions to one another in pairs, triplets, etc. and it is observed that the number of kinds of such transitions is in the
thousands. Because of the five transitions unique to polymers it is argued that the class of materials richest in the
occurrence of phase transitions are polymers. Self-assembly is viewed essentially as materials undergoing phase
transitions. It is evident that of all materials, polymers express self-assembly in fullest measure. A classification
scheme is given for self-assembled structures both in biology and as a technology opportunity. The paradigm
developed in this paper enriches polymer science by revealing the existence of a large number of problems
awaiting solution. This paradigm also provides a route towards understanding biological self-assembly. © 1999
Elsevier Science Ltd. All rights reserved.
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1. Introduction

If one looks about at the various materials that surround us we see that a large number are polymeric.
All living things, both plant and animal and their products such as wood, paper and food, the clothing we
wear, whether natural or synthetic, plastic containers and vinyl floors, paint, extruded or molded plastic
parts, and many others are all polymeric. We would have a real foothold in materials science if we
understood why these various polymer structures exist.

It is the contention of this polymer scientist that polymer materials have a richness of structure that is
unequaled in any other class of materials and that this structure arises from the many thermodynamic
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phase transitions that occur in polymer materials. This is shown by listing and describing the ten broad
classes of polymer phase transition phenomena in Sections 2. 1.2 to 2.2.7, (only five of these transitions
have counterparts in non-polymeric materials), by discussing the root cause of this increased complexity
in Section 2.1.2, and by discussing how these transitions couple in pairs, triplets, etc. in Section 3. By
obtaining a basic understanding of polymer structures as arising from phase transition phenomena we
will understand the basic physics of most of the structures with which we have daily contact.

A brief history in chronological order of the initial basic understanding of the ten transitions is
appropriate. (1) In the early 1940s, Flory [1,2] and Huggins [3-5] using methods developed by them-
selves and others (a good history of the development of the theory of polymer solutions is given in Ref.
[6]) treated polymer—solvent blends and polymer—polymer blends. The basic understanding behind
phase separation in these liquid polymer blends was the same as that for blends of low molecular weight
materials. The transitions are basically first-order except near critical and tri-critical points where they
can be of higher order. (2) In 1949, Onsager showed [7] that the basic cause of the isotropic to nematic
phase transition in lyotropic liquid crystals was the inability of rigid rod molecules to pack at random
when their concentration in solution exceeds a certain critical value. The transition is usually weakly
first-order. (3) In 1949, Flory showed [8] that the competition between the -energy of attraction of
monomers wanting to collapse a polymer and the entropically favored expanded state, which occurs
because both excluded volume and random placement of monomers favors the expanded state, results in
a collapsing of the polymer as the temperature is decreased. The transition is second-order for collapse in
a low molecular weight solvent [9] but can be first-order if the collapse occurs in a high molecular weight
polymer solvent [10]. (4) In 1956-1958, Gibbs [11] and Di Marzio [12,13] developed an equilibrium
theory of glasses by observing that certain molecules do not have a low temperature crystalline phase.
For these molecules the low temperature equilibrium phase must be the amorphous phase and by
evaluating the statistical mechanics of such systems they discovered that the configurational entropy
approached zero at a finite temperature. By identifying this temperature with the glass transition the
Kauzmann paradox [14] was resolved. (5) In 1960, Lauritzen and Hoffman [15] and in 1961, Frank and
Tosi [16] developed an explanation of chain-folded polymer crystals formed from the melt. Sanchez and
Di Marzio extended the treatment to explain molecular weight and concentration dependencies [17,18]
as well as fractionation effects [19] when polymers crystallize from dilute solution. (6) In 19591961,
Tobolski and Eisenberg [20-22] developed a mean-field treatment for living polymers. The non-mean-
field work of Wheeler and associates [23,24] should also be mentioned since they were able to show that
the transition was second-order. Simple models of polymerization give first-order transitions at the
ceiling temperature. See Section 2.1.4. (7) The helix to random coil transition was developed simulta-
neously by Zimm and Bragg [25] for polypeptides and by Gibbs and Di Marzio [26] for polypeptides and
DNA. Zimm [27] in 1961 gave a definitive treatment of the DNA problem which showed it to have a
second-order transition, and Applequist [28] treated the 3-stranded collagen molecule which displays a
first-order transition. (8) In 1965, Di Marzio and McCrackin [29] showed that an isolated polymer
attached to a surface at one end, and whose monomers were attracted to the surface displayed a
second-order transition for the case of a body-centered cubic lattice. Rubin [30,31] showed that other -
lattices also gave second-order transition behavior. (9) In 1997, Di Marzio and Mandell {32] showed that
a polymer threading 2 membrane or partition separating two liquids displays a first-order transition. (10)
Finally, there is the very broad class soaps—diblock copolymers/membranes—micelles—vesicles. The
basic feature in these systems is the amphophilic character of the molecule. The two discordant parts of
the molecule try to phase separate but are prevented from moving too far apart by their covalent
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connector. Many micro and nonoscale structures result such as the neat, middle and isotropic phases in
soaps which correspond directly to the lamellar, cylindrical and spherical phases in block copolymers.
There seems to be little to differentiate the soaps from the block copolymers except for molecular
weight. The classification of the soaps which dates from the work of Luzzati et al. [33] and Ekwall et
al. [34-36] is applicable to block copolymers as well. The recent classifications of Thomas [37] are more
comprehensive in that several new phases are discovered.

Books have been written on eight of the ten phase transitions. Books on the collapse transition and the
polymer threading a membrane transition have not yet appeared. So, what does this manuscript contri-
bute? We believe that this manuscript contains an overview of the ten polymer transitions and especially
of the interrelationships among the transitions that does not exist anywhere else. Sometimes one does not
see the forest for the trees. Instead of being like a bird that always lives in one tree, never straying far
from it, we seek, in'intention at least, to soar above the canopy of the forest. This overview allows us to

“see the interrelations among the transitions and to understand self-assembly as being basically nothing
more than phase transition phenomena. This statement in no way implies that we are anywhere near
solving the many problems of self-assembly. Rather our classification schemes show that many thou-
sands of person-years of work remain. The very existence of a classification provides a guide to future
work. With this work we now have an overview and paradigm on which to base our future discussions.

The outline of this paper is as follows. In Section 2 we discuss each of the ten classes of phase
transitions separately. In each case the basic physics responsible for the transition is discussed, some-
times with a simple mathematical model that captures the essence of the physics. We also show how the
transitions relate to each other. Liquid crystals and glasses are shown to be two sides of the same coin; in
both cases the transitions occur because of configurational entropy considerations. The five different
transitions possible to an isolated polymer have a common cause which is elucidated in Section 2.1.1.
Section 3 discusses the coupling of the transitions with one another. The classification will enable us to
detail the vast number of unsolved problems requiring future study. Section 4 stresses that the kinetics
and pattern formation aspects of the various phase transitions are subjects hardly touched on by the
science community. In Section 5 the various ways to control the size and shape of the various phases are
listed. Section 6 suggests that since self-assembly is essentially nothing more than phase transition
phenomena it should be possible to self-heal by cycling temperature, pressure, chemical potentials
and the other intensive variables of thermodynamics such as the electric and magnetic fields and the
mechanical stress. Section 7 investigates the important area of biological self-assembly while Section 8
discusses self-assembly as a technology opportunity. In Section 9 we try to circumscribe what we have
done by discussing self-assembly as an aspect of complexity physics. Additionally, two speculative
comments on life-forms are made. Finally, in Section 10 we end with a discussion.

2. The ten phase transitions

The first transitions are within an isolated macromolecule. Each of these classes of transitions displays
a first-order and/or a second-order transition in the Eherenfest sense. If any of the extensive thermo-
dynamic quantities volume, energy, entropy or number of moles shows a discontinuity as a function of
the intensive quantities pressure, temperature or chemical potential then we have a first-order transition
in the Eherenfest sense. A second-order transition occurs if there is no discontinuity in the extensive
quantities but the derivatives of the extensive quantities show discontinuities. As we shall see the
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Fig. 1. Polymer threading a membrane. A polymer molecule is singly threading, through a small hole, an otherwise imperme-
able partition separating solutions 1 and 2. In (a) the ends are free, in (b) the ends can roam freely on the surface while in (c) the
ends are fixed to the surface. The formulas give the number of configurations of a chain of /; monomers attached at one end to
the surface and confined in solution 1 as described above. The number of configurations per monomer is z) and the attractive
energy of the monomer for solution 1 is &,. The thermodynamics of this system are easily derived and a first-order transition is
obtained.

isolated polymer molecule is a rich source of exactly solvable phase transitions. Additionally, the
-solutions are easily derived.

2.1. Transitions within one molecule

2.1.1. Polvmer threading a membrane [32] (PTM)

Consider a partition or membrane separating two solutions and make one small hole in the partition
which is just large enough to allow a polymer molecule to thread through, one segment at a time. Fig. 1
shows three separate possibilities for the ends of the polymer in Fig. 1(a) the ends are free to roam each
within their respective solutions. In Fig. 1(b) the ends roam, but only on the surfaces of the membrane
while in Fig. 1(c) the ends are fixed on the surface near the hole. The formulas beside each figure give the
number of configurations available to a polymer of /; bonds tied at one end to a surface with the
monomers constrained to lie on the RHS of the partition. These fractional powers of /; in the denomin-
ators arise because the monomers are constrained to one side of the partition (except by translocating
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Fig. 2. The fraction of segments residing in Region 1 versus ¥, the ratio of partition functions per monomer, for a chain of 50
monomer units suffering various degrees of confinement. The larger the value of § = 6, = 6, the more the confinement, and the
sharper the transition.

through the hole). The canonical ensemble partition function is

-1
QULO = > )" )R, x = ziexp(~Be).x, = zyexp(—Be), Iy + L =1—1 [&)
=0 : :

where ¢; is the affinity of the monomer segment for solution j, 8 = 1/kT, and the 6; are appropriate to the
figure being discussed [38]. The partition is imagined to be infinitesimally thin so that [ = I, + [, and the
monomer in the hole has zero energy. Finite membrane thicknesses are easily accommodated and result
in a constant factor multiplying the RHS of Eq. (1). The thermodynamics of the polymer molecule is
obtained by the usual route (F = —kTIn Q, S = —JF/dT, U = F + TS). In Fig. 2 we plot the fraction
of polymer segments, {/,)/l, on one side of the membrane versus Y = z,exp(—Be; )/zpexp(— B&;) which
is the ratio of monomer partition functions for various values of § = 8, = 6,, and I = 50. One sees that
the larger the value of @ the sharper the transition. The transition is first-order in the limit of [ = 0. To
see this consider the § = 0 case which can be evaluated analytically. We have

-1

o) = Z ()" ()", xp = z1exp(—B&y), x; = exp(—Be&), L+ L =1-1 2
1,=0

o) = [(x2) — () VI, — x1] 3)
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Fig. 3. The fraction of segments residing in Region 1 versus Y, the ratio partition functions per monomer, for polymer chains of
different length, /. The value of 6 is 8 = 6, = 6, = 0. A first-order transition occurs in the limit of infinite molecular weight.
From Fig. 2 we conclude that 8 > 0 also results in first-order transitions. ‘

which shows a discontinuity at x; = x, when the molecular weight / is infinity. Fig. 3 shows plots of {/; /!
versus Y = x,/x, for various values of chain length /. The transition sharpens with / becoming first-order
at infinite molecular weight. Since the 6 = 0 case is the least sharp of the transitions as Fig. 2 shows the
0 > 0 cases also display first-order transitions. It is a simple matter to show that even when 6, # 6, the
transition is first-order, provided the @s are positive.

Let us now try to understand the reason for the occurrence of the transition. The occurrence of the
first-order phase transition is a result of the connectivity of the one-dimensional (1D) polymer chain. We
can see this nicely while at the same time gaining an insight into the Gibbs paradox As discussed for
example by Tolman [39] or Kubo [40]. Consider a perfect gas of  molecules residing in two volumes of
volumes V; and V,. The volumes are separated by a partition with a small channel that allows the gas

molecules to translocate. Molecules in region j have an energy ¢;. The partition function for this problem
is

Q= xix3 ML = @ + )M, x;= Viexp(—Bs) @)
The fraction of molecules in region 1 is eésily calculated as
(I = Viexp(—Be)/[Viexp(—Be) + Voexp(—B&,)) (5

It is easy to see that this system does not have a transition. Indeed when the ¢&; are equal to the molecules
apportion themselves so that the density is the same in each volume, as expected.
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Now consider what our result would be if we did not account for the indistinguishability of the
particles and did not divide by the factorial terms. Then we would have Eq. (3) which does show a
first-order transition. Clearly, it is the sequential connectivity along the polymer chain that makes the
monomers (molecules) distinguishable from one another and brings on the transition!

The model presented here suggests that wherever one looks at linear polymers one will see phase
transitions in abundance. Indeed this is the case. The transitions that occur in the following four classes
of transitions which are discussed in Sections 2.1.2-2.1.5, each occur because the linear connectivity of
the monomers makes the monomers distinguishable from each other.

In our analysis we used the canonical ensemble. The grand canonical ensemble is useful when we
want to focus on the character of the transition. We have

E= 000X = (Y@ )Y en ), A=expBw ©)

from which the thermodynamics can be derived [41] for a molecule. E is seen to be a product of Truesdel
functions {42]. This form can be used directly to obtain (/;) and (/).

W = (a5 (X i) 0]

) = (D i hVii% (3 Y1) ®)

In these formulas wx is not the chemical potential of the solution(s); it is the chemical potential for
polymerization. Statistical mechanics tells us that in the limit of infinite molecular weight the grand
canonical ensemble gives the same result as the canonical ensemble. From this we see that for infinite
I =(l;) + (I,) the ratio (I, )/{l,) passes discontinuously from zero to infinity as ¥ = x,/x, passes from 1~
tol%. :

2.1.2. The helix to random coil transition in biological macromolecules

The book by Poland and Scheraga [43] has a rather complete treatment of this problem and is also a
collection of reprints of pivotal papers. Of the two simultaneously published equivalent treatments that
first offered exact solutions of the problem, the matrix method of Zimm and Brag [25] is more difficult to
understand but easier to use, while the maximum term method of Gibbs and Di Marzio [26] is easier to
understand but more difficult to use. Details can be obtained from the original papers or the book. In this
section we shall not give a complete treatment but rather only emphasize those aspects of the problem
that determine the order of the transition.

The helix to random coil transition can occur in single-stranded polypeptides [25,26], double-stranded
DNA [27] and triple-stranded-collagen [28], and as we shall see the transition goes from being diffuse, to
second-order, to first-order as we increase the number of strands from 1 to 3 (see Fig. 4). In each case we
model the system as an alternation of helical portions and random coil portions. The helical portions
have energy stabilizing the helical structure(s) while the random portion(s) have configurational entropy
stabilizing the random coil. The energy of the helical portion is proportional to the helical length. This
energy is the energy difference between the helix—solution complex and the random coil—solution
complex, only part of which can be ascribed to hydrogen bonds. If the number of configurations of a
random coil of n monomers is z" then the number of configurations of a double-strand of n monomers is
Z'In*”. This expression is obtained from a Gaussian representation of the molecule with the two ends tied
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Polypeptide DNA Collagen

Fig. 4. Schematics of the helical portions of a single-stranded polypeptide, double-stranded DNA, and triple-stranded collagen.
By breaking three consecutive hydrogen bonds rotation is allowed about the covalent peptide bonds; by breaking the hydrogen
bonds between adenine and thymine and/or guanine and cytosine side groups a random coil portion is introduced in DNA; by
breaking the hydrogen bonds (not shown) between strands of collagen we also induce an alternation of helical and random coil
portions. For the perfect matching model the transition obtained by changing temperature or chemical potential is first-order in
collagen, second-order in DNA and diffuse in polypeptides.
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together (end-to-end length equals zero). For a k-stranded loop with each strand having length n the
number of configurations is proportional to 2> 2 To obtain this result write the number of

configurations W; of a denaturated k-stranded loop as

k
W, = J[z"(21'rn12/3)_3/26xp(—3r2/2n12)] dr. ©)
Each strand of n monomers has z*(2wni?/3) ™ 2exp( 3r3/2nl?) configurations consistent with the end-
to-end length bemg r. This expression is normalized so that integration over r results in z" configurations.
Integration of Eq. (9) results in

Wy oc 2 & D2, (10)

“Thus the power of n in the denominator is 0, 3/2, or 3 depending on whether we have polypeptide, DNA
or collagen molecules. We are now equipped to discuss our model of biological macromolecules as an
alternation of loops and helical portions but first we will discuss the simpler zippering—unzippering
(ZUZ) model.

The simplest treatment of the helix—random coil transition is the ZUZ model [26,44]. In the ZUZ,
model unzippering is not allowed in middle portions of the helix, nor is helix formation allowed in
middle portions 0f the random coil. ZUZ is allowed to occur only at the one interface dividing the helical
and random coil portions of the chain. In general this is not realistic although the helical nature of the
polypeptide, DNA or collagen chains can shield the internal hydrogen bonds from interchanging with
solvent hydrogen bonds. If the solvent molecules are so large that they cannot penetrate the helix then the
unzippering of these chains occurs only at the ends and may be treated by the ZUZ model. However,
even in this case there is nothing to prevent helix formation within the random coil part of the chain. This
model is expected to be realistic only if the unzippering of the helix is fast compared to the nucleation
and growth of a hehcal portion within the random coil portion of the chain. The equations are 1dentlcal to
Eq. (1) with 6, = 0,2z, = 1; and 6, = 0,z; = z for single-stranded poly;a)eptxdes, 6, =312, z; = 7* for
double-stranded  DNA (perfect matching model), and 6; =3, z; =z’ for triple-stranded collagen
(perfect matching model). If one imagines that the unzippering process separates the ends of the random
coil strands then 8; = O for all three cases. In any event the ZUZ model gives first-order transition
behavior in all cases.

The ZUZ and the PTM transitions have identical mathematics, but the physical interpretation is very
different. In the ZUZ transition one always has the possibility of forming a helical region within the
random coil regwn or a random coil region within the helical region, but the possibility is ignored. With
the PTM it is meaningless to talk of region 1 within region 2 or region 2 within region 1.

The more realistic treatment is one in which we model our biological macromolecules as an alterna-
tion of loops and helical regions. If our main interest is to determine the order of the transition we can
work with the grand canonical ensemble. In this case we have

EDYC ATV TV D A PVED YRV AP AV ED WEINL (1n

B = X, (x; MX20650)/(1 — X1 (x; )X, (xaA)) 12)

where X, (X5) is the partition function of the random coil loop (helical portion). By the use of tags to keep
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track of monomers in the helical or random coil region we obtain

() = XX INX (1 — X, X)) ! (13)

(L) = AdXpl AKX, (1 — X, X)) (14)

The new feature in these equations, compared to Egs. (7) and (8) is that infinite [ = () + (1) occurs
when

X X, = 1. (15)
This equation determines A as a function of x;, x,, and the ratio

which can vary continuously as a function of ¥ = x,/x,. One should also note the easily proved result
that in the limit of large ! the canonical partition function Q equals A”!. The character of the transition
now depends on the functional forms of X, and X,. Poland and Scheraga [41] have examined the phase
transition characteristics of the transition as a function of 6;. As they show the transition can be of any
order. For double-stranded DNA 6, = 3/2 and the transition is second-order while for collagen 6, = 3
and the transition is first-order.

It is surely no accident that collagen, the main structural protein of animals, is triple-stranded since
three strands are needed to obtain an underlying first-order transition which then serves to stabilize the
structure. It is also surely no accident that the packaging of DNA involves molecules other than DNA
since naked DNA when undergoing its second-order transition has random coil dimensions that are
larger than the cell itself into which the DNA is packaged. These other molecules can act as a third strand
which then lowers the character of the transition to first-order thereby allowing packaging. -

2.1.3. Adsorption of an isolated polymer

The isolated polymer on a surface problem is interesting in its own right and as a foundation onto
which a treatment of interacting polymers near surfaces can be built. In its own right: a recent book [45]
devoted to the problem of polymer interfaces has a chapter [46] in which the isolated polymer at a
surface problem is solved by five separate methods. As a foundation for interacting polymers: Scheutjens
and Fleer [47,48] and Fleer and coworkers [49] have succeeded in solving the many polymers at an
interface problem and have successfully applied their methods to many polymer and biopolymer
problems. The importance and wide applicability of the general problem of polymers at a surface can be
judged by examining a list of 52 applications in Ref. [46]. An additional, more recent, and important
application of the isolated polymer problem is to critical chromatography [50,51]. In this subsection we.
will first give a proof that the isolated polymer at an interface problem is isomorphic to the DNA problem and
therefore displays a second-order transition in the Ehrenfest sense. Then we will outline the original [29] and
simplest method that gives complete information and describe some of the quite surprising results.

The middle portion of a polymer adsorbed onto a plane surface is an alternation of trains and loops,
while at the ends we have two tails extending from the surface, or one tail if have tied down one end as in
a brush. By definition, each segment of the train contacts the surface and if we image a cubic lattice
model of coordination number z then the weight of a train is ((z — 1)exp(— Bey))" where n is the number
of monomers forming the train, or if we imagine the train to be stiff and straight the factor (z — 1) is
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absent. Thus the train portions of an adsorbed polymer have the same mathematical form as the helical
portions of DNA. We will now show that the loops have the same dependence on monomer number as
the loops (denatured portions) of DNA. We begin with the expression for the number of configurations
of a random walk polymer attached to a plane surface and confined to one side of it. It is [46]

W(r, n) = Bh"nDwnl13) "> 2exp(—3r*/2ni%) (17)

where 1’ = x> + y* + K%, and h is the height above the plane surface. By integrating over x and y and

remembering that we can locate the end only to within a volume of I* we obtain for a loop whose one end
is fixed at the origin and whose other end is free to roam on the surface

Wieop = 28"/n*? (18)

“which has the same n dependence as DNA loops. Eq. (17) can also be used to derive the two other
equations displayed in Fig. 1. For a tail we have from Eq. (17)

Wi = 0.77"/n'2 (19)

Thus for polymers, for large molecular weight when we can neglect end effects, the polymer adsorption
problem is isomorphic to the DNA problem. It therefore displays a second-order transition in the
Ehrenfest sense just like DNA.

Perhaps the simplest exact treatment of an adsorbed polymer molecule is the original treatment {29].
One imagines a 1D random walk to begin at the origin and to be confined to the positive x axis by a
barrier. This problem is simply solved. The relevant mathematics are contained completely in Feller’s
book [52] on probability theory. The crucial step [53] is the use of the reflection principle which allows
us to express the number of configurations in the presence of a barrier in terms of the numbers in the
absence of a barrier. Suppose the two ends of a random walk are located at points A and B on the same
side of the barrier which is located at the origin. The number of walks from A to B that do not touch or
cross the origin is equal to the total number of walks from A to B in the absence of the barrier minus the
total number of walks that touch or cross the origin. This latter number is by the reflection principle equal
to the number of walks from A’ (the reflection of point A through the origin) in the absence of a barrier.
Thus the problem of a walk in the presence of a barrier is related to the number of walks in the absence of
a barrier. By weighting each time the walk touched the surface with an energy e the partition function for
this one dimensional problem is easily obtained and the thermodynamics evaluated [29]. But it is clear
that we have also solved the adsorption problem for the body centered cubic lattice as well. The only
difference is that in the 1D problem there is one way to step away or to step towards the origin while in
the d-dimensional bec lattice there are 27! ways to step away or to step towards the surface. Rubin
[30,31], using recurrence relation techniques has solved the problem of a polymer molecule near a
surface for a variety of lattices. In all cases there is a second-order transition. Fig. 5 shows the adsorption
curves for various lattices. The transition point is given by &/kT = In(2/(2 — a)) where ¢ is the contact
energy of a monomer for the surface and 1 — a is the fraction of steps running parallel to the surface.

Some of the results are not intuitive and quite surprising. This lack of intuition derives from the lack of
intuition that most people have for the conclusions of probability theory itself, as Feller nicely explains
in his book [52]. This being the case we can expect to be surprised!

If one end is tied to the surface, the other end free, then when there is no monomer surface attraction
the normal polymer scientist would expect the number of contacts with the surface to be proportional to
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Fig. 5. Polymers confined to a lattice and lying on one side of a surface, with one end fixed to the surface, undergo a second-
order transition as the strength of the attraction of the monomers for the surface is increased. A monomer has an energy zero
unless it is on the surface in which case the energy is &. The lattice types label the curves. sc = simple cubic; hcp = hexagonal
close-packed; fcc = face-centered cubic; bce = body-centered cubic.

the square root of molecular weight. In reality for an infinite chain the expected number of monomer
contacts with the surface is only 1! At the transition temperature the expected number of contacts is
indeed proportional to the square root of molecular weight but the fraction of contacts is zero as Fig. 6
clearly shows; in the adsorption region the expected number of contacts is proportional to molecular
weight. In the adsorption region the monomer density decreases exponentially as we go from the surface
and the adsorption profile is independent of molecular weight for modestly large molecular weight,
while in the desorption region the monomer density increases as we go out from the surface, reaching a
maximum at a distance which is proportional to the square root of molecular weight (see Fig. 7). The
transition point occurs when the density gradient is zero and is therefore given by the reflecting boundary
condition.

Klushin et al. have treated the adsorbed polymer exactly in the Gaussian limit including a consider-
ation of the behavior of the polymer under a force applied to one end [54,55]. Significantly, they have
shown that Landau theory fails [55]. This is an example of an exact treatment showing that seemingly
reasonable assumptions about complex systems are often wrong.

An already dated review of an isolated polymer near a surface gives 52 applications [46]. There are
more. Because of the large number of applications it is important to solve the problem of an isolated
polymer at a surface in all its variations. Some of them are: different shaped surfaces [56], chemically
inhomogeneous surfaces [57-59], fractal [60] and rough [61] surfaces, long-range interaction energies
[62], accounting for the energetics of monomer—monomer, monomer—solvent, monomer—surface,
solvent—surface interactions [49], the effects of excluded volume [63,64], polymers of various archi-
tecture [65], vis. rings, combs, stars, polymers of different composition, such as block and random
copolymers, kinetics of adsorption and desorption, kinetics of adsorption into pores {66], stagnant or
flowing solutions, liquid surfaces [67], and two-phase solvents. Each one of these variations has
application to important problems.
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Fig. 6. Number of contacts with the surface versus monomer energy of contact with the surface for various molecular weights.
Although the fraction of contacts in the desorbed region is zero (for infinite molecular weight) the actual number of contacts is
finite as this figure shows. For 1d the number of contacts varies from 1 when the adsorption energy is zero to (MW) 12 when the
adsorption energy has the value appropriate to the transition point (—&/kT == In 2, which is the reflection boundary condition).

2.1.4. Equilibrium polymerization/1D crystallization

A unique feature of this problem is that a suitably restricted model can be solved exactly in both its
equilibrium and kinetic aspects [68,69]. The model consists of an ensemble of polymer chains immersed
in a bath of monomers. These chains which are sufficiently far apart to avoid mutual interference grow or
ungrow by addition (deletion) at one end with rate constants a; (8,), with j being the length of the chain
in monomers. One does not allow the chains to break in middle positions or to come together to form
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Fig. 7. Polymer density versus distance from the surface for the case when the adsorption energy is zero (desorption region) for
various molecular weights. The location of the maximum density varies (MW)', In the adsorption region (not shown) the
polymer density is maximum at the surface and decays exponentially from the surface.

larger chains; only addition (deletion) of monomers at the one growing end is allowed The chains
started growing initially at Ny locations on a substrate labeled j = 0.

This model forms the basis on which virtually all of polymer crystallization theory rests. The kinetic
part of the problem is discussed in Section 4.1, and in Section 2.2.3 application is made to polymer
crystallization. Here we discuss equilibrium. If adding the jth monomer changes the energy by &; then
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the grand canonical potential is

BE= Zexp(—ﬁ(zaj - nu)). (20)
When the g; are equal the summation is easily performed
E=X(1-X")/(1-X), X=-exp(—B(g— ) 21

which again shows that the chain becomes infinitely long when w exceeds a critical value, u > u,, and
the chain is finite if w < w.. Thus, the transition is first-order. The connection between the critical
temperature and the rate constants is given by the principle of detailed balance. At equilibrium

Njo; = Njy 1 Bj+ (22)

where a; is the rate of adding and S; is the rate of taking off a monomer at the jth site. Since the N; are
known from Boltzmann’s law we have

Nji/N; = exp(B(e — &+1) (23)

o/ Bj+1 = Njw1/N; = exp(—B(p — &+1)) : (24)

which relates the rate constants to the thermodynamics. This formula is useful when determining the rate
constants. ‘

The above treatment is valid when the N, initiating sites are in fixed positions and the chains created
are straight, fixed in orientation and sufficiently dilute that they do not interact. When the initiating sites
are not as described (they may be rings for example) and the chains interact then the problem is more
complicated. In this case the mean field methods of Tobolski and Eisenberg [20-22] and the more exact
methods of Wheeler and associates [23,24] must be used. The transition becomes second-order. A recent
review is given by Greer [70].

2.1.5. Collapse transition v

Flory [8] was the first to quantify the competition between the attractive interaction among monomers
wanting to collapse the polymer onto itself and the entropy of the polymer chain wanting to expand the
polymer. His treatment gave the proper (accurate but not exact) 6/5ths law regarding the end-to-end
dimension, (R?) = An'?, in the expanded region but his method did not establish the character or
existence of the transition. Perhaps the simplest approach that both displays the transition and retains
the flavor of the original Flory ideas is to deal directly with the more fundamental probabilities [9] rather
than the thermodynamic properties derived from them as Flory did. We now give an abbreviated version
of this approach.

The probability of a polymer chain having an end-to-end length R is given by the product of three
factors '

n—1

W = [R%exp(—b°R%)] [ [Ta- jz3/R3)] [exp(—nx(1 — n*/R%))] (25)

J=0

where the first factor is the Gaussian distribution function for the end-to-end length, the second factor
corrects for excluded volume and the third factor gives the energy. The notation is standard: b = 3/2n/?,
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13 is the volume of a bead monomer, n the number of monomer units and y is the y-parameter.
The first and third terms are clearly correct and do not need discussion although they are
approximations that can be improved. To understand the second term imagine that the polymer
is being built up one monomer at a time. The kth monomer can be placed if there is no
interference from monomers placed previously on the chain. To evaluate the probability of
successful placement of the jth monomer imagine that the previous (j — 1) segments are distrib-
uted at random in the volume of the sphere. This gives the factor (1 — jl3/R3) and the product of
these factors constitutes the second factor of Eq. (25). ,

-From Eq. (25) we can find the expectation value of R through the relation (R*) = | R*WdR/ | WdR,
but this cannot be done analytically. Instead we find the value of R which maximizes W (actually [9] RW)
by differentiating Eq. (25) to obtain

@ —a = —n”z[naG(ln(l — n—maﬂ) +n12g73) + xl, a= R/(nlz)”2 (26)
which reduceé to the Flory result for large R.
o’ — o =n"2[112 — X} @27

Thus, the R* = An'? law is obtained. Additionally, Eq. (26) can be solved through the transition to
obtain the law R* = Bn*” in the collapsed region. This does not mean however that the collapsed phase
has unit monomer density; it is in fact less than unity. Fig. 8 gives R? for various values of n while the
plot of the energy in Fig. 9 shows that the transition is second-order.

An interesting result occurs when the solvent is polymeric. Then, depending on the relative molecular
weights and energetics, the transition can be first-order as well as second-order [10].

Because of its simplicity the method is adaptable to other situations in which excluded
volume plays a significant role. For example a polymer between two plates can be solved by
the same procedure; one needs the results of a random walk for the particular geometry in
which characteristic dimensions appear (corresponding to the first factor in Eq. (25)), one needs
a term analogous to the second factor which expresses the excluded volume contribution in
terms of the characteristic polymer dimensions, and one needs an energy term expressed in
terms of the same dimensions. We expect the goodness of the approximation to carry over to
this case as well. A recent review of collapse in polymers in given by Grosberg and Kuznetsov
[71].

Discussion of the five isolated molecule transitions: Four of the above treatments are exact
solutions to realistic models. Only the collapse transition is approximate, because excluded
volume is treated. If excluded volume were treated in the other four cases they would be also
be approximate treatments. The author is aware of no other material for which there are as many
exactly solvable models. Certainly there are no materials for which their phase transitions can be
treated exactly in such a simple fashion.

The above five treatments have the common feature that they each display phase transitions of
first- or/and second-order. As shown in Section 2.1.1 these transitions are directly attributable to
the connectedness of the monomer units into a flexible infinitely long chain. Thus, small changes
in the intensive thermodynamic variables, T, P, p; can result in drastic changes in the polymer
molecule. This is exactly what is needed in biological cell division. The cell needs to make many
different kinds of structures repeatedly. The five transitions plus their coupling (see Section 3) to
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Fig. 8. The normalized size of a collapsing polymer (o = RIRy) versus normalized temperature for various molecular weights.
In the expanded region R? varies as (MW)** while in the collapsed region R%varies as MW)2?,

themselves and to the other five transitions discussed in Sections 2.2.1-2.2.5 allow this. To this
author the molecules of life must necessarily be polymeric; it is no accident that DNA, RNA,
proteins—the molecules of life—are each polymeric. Polymers are the only class of materials
that have a sufficient number of phase transitions to accommodate the required structures of life-
forms.

In the above treatments we did not discuss the effect of placing a force on and end of the polymer. For
the adsorption problem it is quite plain as Di Marzio and Guttman show [72] using a lattice model, that
for each temperature there is a critical value of force perpendicular to the surface which will completely
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Fig. 9. The normalized energy per monomer unit of a collapsing polymer versus normalized temperature for various molecular
weights. The transition displayed here is second-order but if the polymer were collapsing in a field of other polymers, rather

than in low molecular weight solvent as displayed here, the transition could be first-order.

remove the chain from the surface. The transition is first-order. Klushin et al. [54,55] have an interesting
continuum treatment of the polymer on a surface which includes a force on one end. By treating this
problem exactly (the polymer is represented as a Gaussian coil) they show that Landau theory fails, for
this problem at least. One of the virtues of doing the simple polymer problems exactly is that they often
provide a benchmark against which more difficult problems that cannot be solved exactly can be
compared. In this case the venerable Landau theory (a clear discussion of Landau theory is given by
Domb [73)) is shown to have limitations that are not often realized nor appreciated by the larger science

community.
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2.2. Transitions within collections of molecules

2.2.1. Liquid crystals/plastic crystals

Onsager was the first to assert that hard core rigid rods formed nematic phase liquid crystals even
when there is no energy favoring parallel alignment [7]. He proved by use of a virial expansion that as
the concentration of rigid rods increased beyond a critical value the rod-solvent system would convert
from the isotropic to nematic phase. In dilute solution rigid rods are unaffected by neighbors and can
orient in any direction. However as the rigid rod concentration is increased, the neighbors to a rigid rod
prevent it from achieving all of its orientations. The rod is frustrated. Flory, using lattice model methods,
calculated that this frustration becomes important at 7V, = 8 where r is the ratio of length to width of the
rod and V; is the volume fraction of rods [74]. Later estimates [75,76] give a value closer to 4 rather than
8. This inability of rigid rods to pack at random occurs at all levels of size, from molecules to logs.
Consider the following examples: (1) A log jam on a river is alleviated by making the logs parallel. (2)
No maker of dry spaghetti would ever sell boxes of randomly oriented strands. The volume of the box
would be too large and expensive relative to the price of the spaghetti, to say nothing of transportation
costs. Rather, the parallel strands occupy close to unit density and are cheaply packaged and transported.
(3) One can get a good feeling for the packing problem in two dimensions by placing pencils on a
desktop first in parallel and then in random order. (4) Imagine the difficulty a school of gar fish would
have if the individual fish were oriented at random. At high densities they would get stuck. (5) The
volume of a disheveled head of hair is larger than a combed head because combing places the hair in
more parallel alignment allowing it to occupy less volume. There are many more examples at all levels
of size scale.

These ideas were made quantitative by use of orientation-dependent Flory—Huggins (FH) like lattice
statistics [77-79]. Recent computer modeling shows that the assumption of a lattice does not affect
results adversely'; provided we count configurations on the lattice correctly. When lattice model calcu-
lations err it is because the calculations of the number of configurations on the lattice is done incorrectly;
not because we used a lattice. We shall now give a detailed derivation of the number of ways to pack
rigid rods on a 2D square lattice. The generalization to arbitrary dimension is trivial.

The calculation proceeds by placing the rods one at a time onto the lattice while keeping a running
count of the number of configurations. In order for the calculation to be self-consistent, as it is, the result
will not depend on the order of placement. We have N, (Ny) rods of length r lying in the x (y) orientation.
We shall place the N, rods and then the remaining N, rods on a lattice of N, + N, + Ny = N sites, Ny
being the number of unfilled sites remaining after all the rigid rods are placed. After j rods have been
placed in the x orientation the first segment of the (j + 1)th rod can be placed in any of N — jr locations.
To lay down the remaining (r — 1) segments of this rod we need the r — 1 adjacent contiguous sites lying
in the x orientation to be empty. In the Flory version of FH lattice statistics one would spread the
previously placed jr segments randomly. The probability of a successful step would be equal to the
probability that a site is empty which is p; = [N — jr]/N. The probability that (r — 1) contiguous sites
are simultaneously empty is pg'_” . However a more accurate counting is needed for the orientation
dependent statistics. The place from which we step is a neighbor to the place into which we step. So the
number of neighbors to holes (empty sites) compared to the number of neighbors to occupied sites is
relevant. The number of neighbors to holes in direction x is (N — jr), while the number of neighbors to

! The author believes this is a consensus opinion.
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rods in the x direction is j since each rod has only one neighbor in the x direction. The probability of a
successful step ps plus the probability of an unsuccessful step is 1. We then have two equations

pstpu=1, (28a)
pslpy = [N — jrllj (28b)
from which we obtain

=[N —jr)/[N — j(r — 1)] : (29)

and the probablllty that (r-1) contiguous sites lying in orientation x are empty is p(' D. The number of
configurations (number of ways to place the (j + 1)th molecule on the lattice is then given by

[N = rjlp{™P (30)

After the N, rods are placed and k of the N, rods are laid down in the y orientation we have for the
probabilities of successful and unsuccessful placings of the (k + 1)th rod in the yth direction

pstpu=1, ‘ (31)
Ds/py = [N — rN, — kr)/{rN, + k] (32)
=[N = rN, — krJ/[N — k(r — 1)] (33)

and the number of ways to place the (k + 1)th rod in the y orientation is
[N — rN, — rk}p"™"P (34)

Notice that the number of neighbors to rods is orientation dependent. If the rods which are already placed
on the lattice lie parallel to the direction of step they contribute as mole fractions while if the rods lie
perpendicular to the direction of step they contribute as volume fractions. This insight is due to Flory
[77}.

By multiplying the j-dependent product of terms given by Eq. (30) and the k-dependent product of
terms given by Eq. (34) together and taking proper account of indistinguishability of rods in the same
orientation we obtain for W(N,, N, Np) the number of ways to place N, rods in orientation x, N, rods in
orientation y, an N, solvent molecules (or holes) on a square lattice of N, + N, + No =N s1t:es

In(W(N,, Ny, Np)) = — Z [N In(N/N) — (N — (r — DNIn(1 — (r — 1)N/N)] — Nyln(No/N) (35)
k=1

It is a simple matter to show that if we replace the upper limit by d then Eq. (35) is valid for all
dimensions.

This equation is a useful generalization of the FH results which are valid for isotropic solu-
tions. For an isotropic solution (N, = N/d) we obtain the Huggins result (see Ref. [6; Eq. (3.48)])
for rigid rods while for one dimension Eq. (35) gives the exact result. Also, it can be shown that
for d dimensions and the rods all lying in one orientation the result is exact in the thermody-
namic limit. This means that the leading term of an expansion of In W in powers of N, = N, + N,
is the exact result and that all subsequent terms are of lower order. Finally, as an aside, we
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should mention that if flexible molecules are stretched so that the fraction of bonds lying in
orientation k is o, then Eq. (35) (with a small correction to the indistinguishability factor)
accounts for the interferences among chains with the substitution a; = N, /(N| + N;). This allows:
us to improve the classical theory of rubber elasticity which is a gas-like theory by accounting
for the mutual interferences that stretched molecules suffer in their liquid-like state. See Di
Marzio [80,81] and Tanaka and Allen {82] for details.

Armed with our reasonably accurate expression for the entropy one can add energies to obtain
predictive theories of liquid crystals [83-96]. A nice feature of Eq. (35) is that it is easily adapted to
molecules that have both rigid and flexible portions. Although the qualitative features of liquid crystals
are well represented by lattice theories with energetics continuous angle models based on generaliza-
tions [97] of Maier—Saupe [98—-100] ideas give better quantitative results.

An essential feature of Eq. (35) is that it predicts that there is a critical value of concentration at which
the entropy of an isotropic distribution of rods becomes zero. Below this concentration each rod is
frustrated from choosing its orientation independently of its neighbors and must instead bundle with its
neighbors. In the Flory theory which is a hybrid lattice-continuum treatment the frustration occurs at
approximately rV, = 8 while other purely lattice treatments give approximately rV, = 4.

We should explain the heading of this section viz. “liquid crystals/plastic crystals”. If we realize that
certain degrees of freedom can undergo a phase transition while others do not then we can classify
materials according to which degrees of freedom have made a transition [101]. Thus in the isotropic
phase the center of mass and the orientation of the rods are liquid-like. A transition to the nematic phase
results in restricted orientation but the center of mass still has liquid-like freedom. As we cool further the
center of mass losses its freedom and we have a crystal if all three translational degrees of freedom are
lost and a smectic A phase if only the translational degree of freedom parallel to the long axis of the rod is
lost. A plastic crystal is a material which losses its translational degree(s) of freedom before its orienta-
tional degree(s) of freedom. Thus, plastic and liquid crystals form a continuum [102] and a classification
on the basis of transitions of “degrees of freedom of molecules” rather than “of molecules” allows us to
view the two classes of materials from a unified perspective.

In Fig. 10 we have listed the various kinds of liquid crystals and plastic crystals along with the
translational and orientational symmetry. Thus T3Q;R, indicates that the isotropic phase has transla-
tional freedom in all three dimensions and complete rotational freedom. T¢QgR, denotes a pure crystal.
Usual nomenclature uses O, to denote rotation about one angle and O; rotation of a rod in 3D space. The
rotation (non-rotation) of a rod about its long axis will be denoted by R;(Ry). A useful feature of a
classification is that an empty spot in the classification begs the question as to whether it is necessarily
empty or whether the material has not yet been discovered, or whether the classification itself needs
modification. This forces one to search in order to answer the question.

Finally we should mention that liquid crystals may be stabilized mainly by favorable energetics of
‘parallel alignment. Steric hindrances need not play the major part. Many thermotropic liquid crystals are
of this type as are polymeric liquid crystals formed by placing mesogenic groups in the backbone or as
sidegroups of polymer molecules. The Maier—Saupe treatment of liquid crystals did not initially incor-
porate the Onsager insight but we can do this by proper choice of the self-consistent energy.

The literature on liquid crystals is voluminous. We mention only two recent books by deGennes [103]
and Chandrasekar [104].

Liquid crystals have the important feature of combining mobility with structure and allowing trans-
port of chemicals through a structured object.
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Fig. 10. A classification of rigid-rod liquid crystals-plastic crystals according to which degrees of freedom have made a

transition. T; means that the center of mass has translational freedom to move in j dimensions. R; means that the rod can rotate

about its long axis while Ry means that it cannot. Q, means that the rod has the full two degrees of freedom to point in any

direction, Q, gives one degree of freedom, while Qy means fixed orientation. Thus the isotropic to nematic transition is .
represented by T3Q,R, — T3QqR;, while isotropic to smectic A is represented by TsQ,R, — T,QoR;. A crystal is represented

by ToQoRo. No liquid crystal contains Q, and no plastic crystal contains Ts. One row in the figure is left empty because Q,R, is

an impossible description. An empty spot in the classification begs the question: has the material not yet been found, or does the

classification need modification? We can enlarge the classification by adding I; to the groups where k enumerates different

internal states.

2.2.2. Glass transition/sol-gel transition

The Onsager observation that the formation of the nematic phase in rigid rod systems is entropy driven
allows us to develop an important insight into the nature of polymer glasses. The formula rV, = 8 has
been used in the previous section by keeping molecular weight 7 constant and then increasing the volume
fraction, V,, of rigid rods until the product is 8 at which point the random packing gives way to an
ordering of the rods. But we could have equally imagined keeping V; constant and varying r. Now
consider with reference to Fig. 11 a model of a semi-flexible polymer which consists of a sequence of
rigid rods connected by perfectly flexible joints. At high temperatures the polymer is very flexible which
means that the rods are short and the joints many (one less than the number of rods). As we lower the
temperature the rods lengthen so that each polymer molecule is represented by fewer connected rigid
rods. The number of flexes for a polymer of r monomers is rf where f'is the fraction of monomers that are
flexed. For an isomeric state model of the polymer with one lower energy well and two higher ones,
f = 2exp(—BAe)/(1 + 2exp(—BA¢g)) and the rod length is 1/f which becomes indefinitely large as T
decreases. Since in bulk polymers V; = 1 as the temperature is lowered we reach the Flory condition
rV. = 8 and the articulated rod system then has the same kind of packing difficulties that occur for liquid
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Fig. 11. One can show that the isotropic to nematic liquid crystal (LC) phase transition and polymer glassification occur for the
same root cause which is the drastic decrease in configurational entropy. This occurs when we concentrate the rigid rods or cool
the semi-flexible bulk polymer. In the first case the rigid rods show frustration beyond a critical concentration which can be
avoided by having some of the rods align to form the nematic phase as shown in the upper right hand figure. For glasses we can
model the bulk polymer by chains each containing many rigid rod sections. As we cool the bulk polymer from high tempera-
tures the many short rods of each chain become a few long rods of each chain as illustrated and we again reach a concentration
where the difficulty in packing the rods causes the polymer molecules to become frustrated from achieving their equilibrium
shapes. At this point the rod portions can align to form a LC or a crystal phase, or the chains can become stuck and form the
glass phase. The equilibrium glass phase results if we substitute for the rigid straight rods rigid but non-straight portions. These
non-straight portions cannot pack together to form either LC or crystals (they could only pack parallel by becoming straight, but
this would increase their energy for by hypothesis the non-straight portions have the lower energies); they remain stuck and
thereby form the glass phase.

crystals. The liquid crystals had three possible alternatives when rV; exceeded 8. (1) A portion of the
material became ordered, i.e. liquid crystalline; (2) if the ordered regions had strong energy preferences
there could be an underlying crystal phase which could become the stable phase, and the LC phase would
be metastable relative to the crystal phase. This illustrates the important fact that in order to form the LC
phase one must not only favor the ordered phase relative to the disordered phase but also the underlying.
crystal phase must not have energies so strong that they suppress the translational freedom associated
with nematic ordering; (3) the final possibility is that the rigid rods get stuck in their randomly ordered
phase.

The polymer (articulated rigid rod) system also displays these three options. The rigid rod portions
align and form either the liquid crystalline or the crystalline phase; or the rigid rods do not align and they
become stuck.

We now argue that the stuck phase is an equilibrium phase, not a metastable phase, and we identify it
with the glass phase. To do this we need to distinguish between stiffening and straightening. As we lower
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the temperature all semi-flexible molecules stiffen. However only certain of the semi-flexible molecule
straighten as they stiffen. Polyethylene, for example, is expected to straiten as it stiffens. Its lowest
energy state is the perfect zig-zag. However an atactic polystyrene, for example, will have as its lowest
energy state one of the large number of random walks possible to it at high temperatures. A bulk system
of these molecules when cooled suffers the same reduction in number of configurations as the articulated
rod model of a polymer (this statement is a result of actual calculation [12,13]) but there is no ordered
phase for it to fall into (The ordered phase requires straight molecules, but they by construction are of
high energy.) Such systems form a glass phase of necessity [105].

Thus, the insight that the isotropic to nematic phase transition is entropy driven argues that glass
formation in polymers is entropy driven and conversely. The highly successful use of the Onsager insight
[83-96] in predicting the properties of liquid crystals argues for the configurational entropy explanation
of glass formation and the highly successful configurational entropy explanation of glass formation
[12,13,105] argues for the configurational entropy explanation of the isotropic to nematic transition in
liquid crystals. It should be noticed that in both liquid crystals and glasses the molecules are frustrated in
the same sense as that of Toulise [106]. That is to say, a rigid rod cannot accommodate the energetic
preferences of all of its neighbors simultaneously; nor can a stiff (stiff but not straight) polymer.

The above arguments, although they implicate the vanishing of configuration entropy as the explana-
tion of glass formation do not prove that there is an actual transition. For this we must make our best
estimate of the functional form of the entropy of a bulk polymer system. When this was done using the
Huggins version of the FH lattice model we obtained [12,13] a second-order transition in the Ehrenfest
sense. The many comparisons with experiment that were made over the ensuing 40 years were success-
ful. However we must be open to the idea that more accurate statistics would result in a transition that
was slightly rounded and that the transition is of third or higher order. This question is still open.

In our original theory of glass formation we postulated that the glass transition occurred when the
configurational entropy, S., became zero. The theory had S, becoming zero at a finite temperature and
becoming less than zero at lower temperatures. But if we write this entropy as an integral over a local
entropy density s,

S, = Jscdxdydz ' : (36)

we see that zero entropy implies zero local entropy density everywhere since the entropy density s, can
never be negative. However, the existence of the beta transition below the glass temperature implies that
there are pockets of local mobility. Thus, we should view the glass transition as occurring when the
~ packing difficulties experienced locally by the chains first percolates throughout the system [107]. This
would occur at temperatures slightly higher than that given by using the condition S; = 0 in the Gibbs—
Di Marzio treatment. This idea is developed in analogy to gel formation in polymers. As we continue to
introduce cross-links we reach a point (the percolation point [108]) where we have pockets of uncross-
linked molecules immersed in a matrix of connected molecules.

Finally we observe that a complete thermodynamic theory of any material requires evaluation of
equilibrium properties, kinetic properties, and pattern formation aspects of the kinetics. For glasses the
kinetic properties are generally considered to be the most important because the viscosity is always so
large near the glass transition, as it must be since the number of allowed configurations is small and flow
which is the motion from one allowed configuration to another becomes arrested [12,13,107,109].
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Fig. 12. A polymer lamella formed from low molecular weight polymer in the process of crystallizing from dilute solution.
Stems nucleate on the lateral surface with a rate i and then the strip is filled in by lateral growth of rate g. If g is very large the
strip is very smooth and the growth rate G perpendicular to the growing face is proportional to i (Regime I growth in which
nucleation is the rate detemumng step). If g is small the surface is corrugated (many strips of few stems each) and the growth
rate G is proportional to (ig)'? (Regime II growth). This figure is meant to illustrate the large number of paths to crystallization
that must be considered for a complete theory. What are the proportions of adjacent and next-to-adjacent re-entry? How tight
the loops? What fraction of cilia are incorporated into the crystal? Can cilia nucleate adjacent strips? What about the variations
in strip thickness? What about variations in stem length? Does the stem lay down as a unit or does it zipper down? A complete
theory of polymer crystallization requires that we answer these questions quantitatively and simultaneously.

2.2.3. Crystallization

- When crystallized from dilute solution polymer crystals grow as thin sheets or lamella with a uniform
thickness on the order of 100 A. The contour length of the polymer is generally much longer than the
lamellar thickness so it came as quite a surprise when X-ray data showed that the polymer chains were
running perpendicular to the lamellar surfaces and therefore necessarily folding back at the surfaces
[110-111]. The straight runs of polymer between the two lamellar surfaces (called stems) are connected
by folds at the lamella surfaces. Fig. 12 is illustrative. Polymer crystals formed from the bulk are also
lamellar with the stems perpendicular to the lamellar surfaces, but in this case fewer stems fold back into
the crystal; some continue into and become part of the amorphous polymer between lamella.

The theory of polymer crystallization was driven by the initially counterintuitive experimental obser-
vation of chain folding [110,111]. One would have expected the polymer chains to be completely
extended in equilibrium since folds cost energy to create. This suggests that if one could predict growth
rate as a function of lamellar thickness it should show a maximum at some finite thickness. This is indeed
the case. In 1960, Lauritzen and Hoffman [15] and in 1961, Frank and Tosi [16] developed closely
related theories which were able to predict growth rates and lamellar thickness provided that they
assumed the lamellar morphology. Since the crystal is a lamella of constant thickness it grows by
accreting strips of polymer stems to its perimeter so that the problem is a two dimensional one (one
grows both along the strip and outwards). Further it was presumed that the rate determining step was the
nucleation step-nucleating an outer strip was a rare event-and once the nucleation event occurred the
strip quickly completed its growth. After a relatively long time a new nucleation occurred and the next
strip quickly grew; and so on. Thus the problem was reduced to a 1D problem and the flux determined
solution which is described in Section 4.1 could be employed. The growth rates o and 8, of Eq. (41)
describe placing the first stem onto the smooth outer strip of the crystal while the o and 8 describe the
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stabilization of this stem by chain folding (adding new stems to the side(s) of the initial stem). The
nucleation rate, i, is then given by Eq. (47) and the growth rate of the crystal, the rate at which strips are
added to the periphery is proportional to i. When the rate constants «, B8, ag and B are expressed in
terms of the bulk and surface free energies of the crystal, then credible predictions of crystal growth are
obtained. The cause of the finite lamellar thickness arises from a competition between the placing of the
first stem which wants to be short and subsequent strip completion stems which want to be long. For the
first stem the lateral surface free energy is positive (unfavorable) and proportional to the stem length; for
long stem lengths it overwhelms the negative (favorable) bulk free energy. This is why nucleation events
are rare, and they are rarer the longer the stem. The second and subsequent stems that complete the strip
have no lateral surface free energy; there is only the favorable bulk free energy and the positive fold
energy (end surface free energy). The bulk free energy is proportional to the stem length and therefore
favors long stems. Granted the assumption of constant lamella thickness for the growing strip we can
then predict growth rate as a function of lamellar thickness, temperature and the energy parameters (bulk
energy, lateral surface energy, end surface energy). This growth rate shows a sharp maximum as a
function of lamellar thickness and this fact explains lamellar crystallization.

Although successful in predicting growth rates and lamellar thickness as a function of temperature
there were several features of the model that needed justification and improvement. The implicit
assumption of constant lamellar thickness was addressed and partially justified by the work of Lauritzen
and Passaglia [112]. The assumption of tight folds was justified in the work of Di Marzio [69] and of
Sanchez and Di Marzio. {17,18]. The assumption of adjacent reentry was partially justified by several
arguments [113,114] that developed and expanded an observation of Frank [115]. In order to have non-
adjacent reentry one needs to form a loop above the surface of the lamella forming an amorphous phase. -
If each stem continued into the amorphous melt random walk loops would overfill the space occupied by .
the amorphous material by a factor of 3 which is impossible [113,114]. This means the amount of
adjacent re-entry is of the order of 2/3 or more. The gamblers ruin model [114] of the amorphous—
crystalline interface provides valuable. insights into its nature. The extreme difficulty of the problem is -
illustrated in a pair of papers [116,117] which carefully treat short polymers that fold at most once with
allowance for adjacent and next to adjacent re-entry and cilia.

Generalizations of the model soon followed. The problems of molecular weight dependence and
concentration dependence when crystallizing from dilute solution were examined and partially solved
[17,18]. The fractionation that occurred when polymers of different molecular weight were concomi-
tantly crystallized was solved [19].

Applying the work of Hillig [118] on growth of metals to polymers, the formula G oc. (ig)'"* was
derived [19]. This is the famous Regime II where both the strip nucleation rate i and the strip fill-in rate g
both contribute to the growth rate G(i, g) perpendicular to the strip. In this regime the growth is truly two
dimensional. Before the nucleated strip fills-in there is nucleation so that the advancing crystal growth
front is highly stepped. In contrast, Regime I nucleation events are so infrequent that strip completion
occurs long before the next nucleation event. Finally, we have Regime III where the nucleation rate is so
large that the growth rate G is again proportional to i.

The comparison of experiment with theory and the accommodation of one to another has been treated
in a series of papers by Hoffman and associates. A recent work by Hoffman and Miller [119] gives the
latest developments of what might be called the classical theoretical treatment and contains many
references.

The two-volume work of Wunderlich {120], a review by Khoury and Passaglia [121] and a more
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recent review of Phillips [122] give rich introductions to the complexities of the crystalline morph-
ologies. The fine experimental work emanating from the laboratories of Mandelkern at Florida State,
Cheng at Akron and Toda in Japan should also be noted.

2.2.4. Liquid—liquid transitions/polymer blends

Even a cursory review of polymer/solvent and polymer/polymer blends would occupy a full volume,
so, we will content ourselves with giving the basic reason behind the phase separation phenomena in
these systems and then mention some recent reviews. '

Using the lattice model with nearest neighbor energies &; the energy AE of a blend relative to a
reference state of unmixed molecules is for a two-component system

= (J2)[2N1 V12 + NiViey + NaVaey] — (Z2)[N&y) + Nyl

= (Z2)[2N\V 812 — NiVagyy — NaViey] = (2N V(2615 — &1 — &29) = NiVoxkT = N,V xkT
37

where V, is volume fraction, z is lattice coordination number, N; is number of monomer units and y the
famous chi-parameter. This formula assumes random mixing and that non-nearest energies are all zero.
If we allow non-nearest interaction energies the form of Eq. (37) is unaltered with the &s now being
integrals over distance. Now if we imagine the gs to arise from van der Waals potentials we can write

&j = 010, [f; i(r)dr, with 02 being Hamaker constants [123-125]. If f;;(r) does not depend on i, j we
have

AE = ()N, Vy(e1; — &1 — &) = —(@2)NVa(oy — 09)° If(")dr (38)

which shows that as far as the energetics go, like prefers like and only the entropy of mixing favors a
mixed system. The entropy of mixing involves three degrees of freedom per center of mass so that it is
relatively large, on a per monomer basis, for small polymers but vanishingly small for large molecular
weight polymers. Thus the energy contribution to the free energy dominates; for two-component
systems of polymers, phase separation is the dominant reality. This is actually observed; most two
component polymer systems are phase separated.

Molecularly mixed blends are useful materials and can be achieved in several ways. The first is to use
polymers whose energies arise from dipoles, hydrogen bonds, ionic forces-that is energies that are other
than van der Waals energies. Another approach is to compatibilize the two polymers by adding diblock
copolymers containing the two species one hopes to blend together. This helps to disperse the polymers,
sometimes into a molecular mixture, usually into a microphase-separated blend.

The variety of different phase separated modalities has been discussed by Scott and Van Konynenburg
[126] for low molecular weight two-component van der Waals fluids. They find nine different regions.
Polymers display all the complexities that exist in these blends®. We mention a recent review by Han and
Akcazu [127] of the important subject of spinodal decomposition in polymer blends.

% And more. because the internal changes can couple in as yet unclassified ways to the transitions arising from those due to
mixing.
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2.2.5. Soaps—block copolymers/membranes—micelles—vesicles

If we attach two incompatible polymers together to form a block copolymer the covalent connection
prevents the pieces from traveling too far away from each other and we obtain microphase separation.
We then obtain the familiar lamellar, cylindrical and spherical phases which show beautiful regular
periodicities on the order of the molecular dimensions. The dimensions tend to vary as the 2/3 power of
the molecular weight [128—130]. Thomas and associates have shown that other structures such as
gyroids, interpenetrating networks etc. exist as well [37,131-133]. The repeat dimensions of these
structures tend to vary as the 2/3 power of the molecular weight. Which structure actually occurs
depends on the relative molecular weights of the two blocks, and the system energetics.

Historically, the first amphiphilic materials to be studied were the soaps [33-36]. The structures of
soaps parallel those of block copolymers. Thus the neat phase in soaps corresponds to the lamellar phase
in polymers; the middle soap phase to the cylindrical polymer phase; the isotropic soap phase to the
spherical polymer phase. The more exotic gyroid and interpenetrating phases correspond as well. The
difference between block copolymers and soaps is merely a matter of molecular weight.

Free standing membranes, micelles, vesicles and related structures can be thought of as being derived
from low molecular weight block copolymers and soaps by adding enough solvent to separate the layers,
or cylinders, or spheres from one another. Two options are then possible (1) the structures dissolve in the
solvent-uninteresting, (2) the structures separate but retain their integrity-very interesting. They are then
called membranes or spherical or cylindrical micelles/vesicles. The route to formation of the above
described free-standing structures was described only to emphasize their relation to block copolymers.
Usually the route of formation is much different. Membranes can, of course, be formed individually and
one of the most blologlcally significant ways that vesicles and micelles form is through endocytosis
[134]. This is explained as follows. In a bilipid membrane, if both sides of the membrane are identical,
we expect the membrane to be planar because by symmetry the equilibrium curvature of the bilipid
complex equals zero. If the individual halves have a non zero equilibrium curvature the membrane may
be close to an instability which could cause buckling. Now, if one side of the membrane is altered by
attachment or proximity of other molecules the local equilibrium curvature could become greater/less
than zero. This will result in the membrane breaking up and forming spherical vesicles of radii on the
order of 1/p. If the principle curvatures are different then cylinder or scrolls [135] are possible. When the

. other molecules are not spread uniformly but instead are concentrated on a patch of the membrane only
this part will bud into vesicles.

The importance of membrane science can be judged by the comment of Nobelist Edeleman [136],
who makes the point that surfaces are extremely important in biology, to the effect that in cell processes,
surfaces and membranes are all that there is. The sciences of soaps and membranes—micelles/vesicles
probably employ more scientists than polymcr scierice and a large amount of their literature is useful to
those studying polymers.

Granted the enormous complexity of this subject, it is nonetheless accurate to say that the underlying
reason for the existence and complexity of this tenth class of materials resides in the fact that the two
incompatible parts of the molecules are trying to phase separate from each other but are prevented from
doing so by their connectedness within the molecule. It is this feature that leads to microphase separation
and the resultant complexities of soaps, membranes and block copolymers.

2.2.6. The wetting transition
In the last five sections we have been concerned only with bulk phases, but since bulk materials have
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surfaces a complete treatment of these materials must consider surface behavior as well. In a now classic
paper on critical point wetting [137] in two-phase fluid mixtures, Cahn has shown that there is a surface
phase with its own critical point. This surface phase is not 2D since it has a finite thickness. We must then
consider, if even in a rudimentary way, how this transition is evidenced in polymers. It is clear that each
of the five bulk phases, singly, or in combinations which are discussed in Section 3, display surface
phases that merit study. This is because the Cahn development does not, of logical necessity, require that
the phases be liquids. Two applications of these ideas might be:

1. Cheng and colleagues have studied the morphologies of “metastable surface phases” that seem to
persist for very long times [138]. Is it possible that these phases are metastable relative to the bulk but
stable in the wetting phase?

- 2. Composto and colleagues have experimentally shown [139,140] a surface enhancement of one of the
polymer components in the wetting phase. Can one somehow harvest the enriched wetting phase?

2.2.7. Other transitions

.Zwanzig and Lauritzen [141,142] have examined a strictly 2D model of a long molecule that folds
back and forth on itself. The molecule consists of straight runs of monomers lying adjacently and
connected by tight folds. The transition seems to be second-order.

In the section on liquid crystals we observed that degrees of freedom can have their own transition
behavior. Thus the formation of the nematic phase from the isotropic phase can be viewed as a phase
transition in the orientation degrees of freedom while the translational degrees of freedom retain their
liquid-like character. In plastic crystals the translational degrees of freedom crystallize while the orienta-
tional degrees of freedom remain liquid-like. It is suggested that internal degrees of freedom can go
through their own transitions while spatial degrees of freedom show no change (there is. a science of
guage groups that connects the internal modalities to the external ones. There is no reason why these
ideas cannot be applied to molecules. See Moriyasu [143], for application to elementary particles and
Anderson [144], for a more general treatment in terms of generalized affinities). It is even possible that
the momentum degrees of freedom can undergo their own phase transition without a change in the spatial
degrees of freedom.

Suppose that we could suddenly change the chemistry. That is to say the A type molecules comprising
the material suddenly become B type molecules. Then, obviously thermodynamic transitions can accom-
pany the chemical transformation. The point is that many times we do have a chemical change. An
example might be a globular protein that changes from one internal state to another (Section 3.1.1 gives
an example of this).

Obviously, we must be open to the possibility that there are more than the ten classes of transitions
enumerated above.

3. Coupling of the ten transitions to one another
3.1. Coupling of pairs of transitions

In the matrix of Fig. 13 coupled pairs reside at the intersection of rows and columns. There are (10 X
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Polymer Phase Transitions: Coupled Pairs Reside at the Intersection of Rows and Columns.
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Fig. 13. A matrix with the ten classes of polymer phase transitions listed vertically and horizontally. Each intersection of a row
with a column corresponds to a coupling of the two kinds of transitions. There are 45 such (classes of) couplings only a few of
which have been studied. Additionally, we have ;C,o = 120 triples of coupled transitions, and so on. Obviously much work is
required before polymer phase transitions can be understood in their full generality.

10 — 10)/2 = 45 such pairs. Only a few of them have been im)estigated. Fewer still have been examined
for their relevance to biology or as a technology opportunity. In the following four subsections we shall
examine some published examples of coupled pairs of phase transitions.

3.1.1. Sickle cell anemia viewed as a coupling of the polymerization transition and the isotropic to
nematic phase transition

Each red blood cell contains millions of haemoglobin molecules at a volume fraction density of about -
0.4. In people with the sickle cell trait, under low oxygen pressure, the hemoglobin molecules poly-
merize to form microtubules which each have the form of a chimney with the bricks of the chimney
being globular hemoglobin molecules. From the relation rV, = 8 of Section 2.2.1 we see that when the
length/width ratio of the microtubule exceeds 20 the rigid rod microtubules are forced to align forming a
nematic phase. Thus, there is a coupling between polymerization and LC formation. These microtubules
have a lateral interaction that stabilizes the nematic phase and this, in turn, results in a distortion of the
biconcave red blood cell into the sickle shape. In vivo this distortion probably initially occurs when the
red cells are making their way through the fine capillaries which distort even healthy cells seeing that
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their inside diameter is smaller than the cell size. Details of the mathematics can be obtained in the works
of Minton [145-149] and of Herzfeld [150].

A similar phenomenon occurs in the formation of phi cell bodies which are associated with cancer of
white blood cells. Here certain globular proteins in white blood cells aggregate to form microtubules and
the nematic liquid crystalline phase again forms. However in this case the cell wall is weak and the
bundle of microtubules punctures the cell wall membrane forming objects which under the microscope
look like the greek letter ¢; hence the name. Descriptions of phi cell bodies are contained in work of
Hanker and Giamara {151,152].

3.1.2. The helix to random coil transition near a surface

Some time ago the question was asked of a how the second-order transition of DNA molecules is
changed when the DNA is near a surface, and it was concluded that the transition became first-order
[153]. However, the treatment was approximate. Quite recently Muthukumar gave an exact treatment of
the problem (within the context of path probability methods) of a polypeptide near a surface and showed
that even for a single stranded system the transition near the surface can be first-order, even though the
polypeptide shows only a diffuse transition away from the surface [154]. A single stranded polypeptide
system far from a surface displays a diffuse transition-it occurs over about a ten degree temperature
range and has no discontinuities. These results are possibly relevant to. the problem.of surface induced
enzymatic activity or conversely of enzymatic activity that is destroyed by the molecule being near the
surface. The point being that the presence of the surface changes the shape of the molecule. Ringsdorf

- and others [155-157] have shown that enzymatic activity is not always a function of one globular

protein. Sometimes a collection of molecules, competing with each other for space, is required. -

3.1.3. Two examples from technology; cooling a two-phase glass

First example: Let us cool a two-phase system so that it forms a glass. Then one of the phases can-be
leached out forming a porous glass, sometimes with very uniform pore sizes. This material is useful, in
chromatography for example [158,159].

Second example: Let us cool a bicontinuous two-phase system so that it forms a bicontinuous glass.-
Then one of the phases can be leached out forming a porous glass. One now heats the glass to collapse
the pores. This is the route that is used to make Vicor [160].

- 3.1.4. The polymer threading a membrane (PTM) transition cdupled to the helix—random coil transition

Di Marzio and Ho considered a polypeptide or a DNA molecule threading a membrane [161].
Formally we can solve this problem if in Eq. (1) we replace x; and x, by ¢,({;) and g,(l;) where the
gs are helix—coil partition functions on a per monomer basis. The problem is very difficult when we are
dealing with small molecules because the gs are / dependent but in the limit of infinite molecular weight
there is a simplification. In this case the major contributions to the partition function are when /; and /,
are both very large. If /| and [, are very large then the gs are not dependent on /|, /; and the only effect is
that in our thermodynamic formulas of Section 2.1.1 we replace the xs by the gs. (A similar treatment
holds when the strands adsorb onto the surfaces of the partition separating the two solutions®). What we

3 Actually, all that is required for the polymer to translocate is that the free energy difference per monomer change sign as we
lower the temperature. The authors are not aware of any limitation on the number of times this can happen as we cool the
system.
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use for g; depends on our assumptions. We can use the ZUZ model for which we can derive the exact
solution even for finite molecular weights or we can use the more realistic treatment of the helix-random
coil transition for which we now describe the general character of the transition.

Let us model the free energy per monomer unit of the helix to random coil transition by two connected
straight line segments of negative slope with the low temperature line being less steep. There is a pair of
lines for Region 1 and a pair for Region 2. If these lines are placed together on a free energy versus
temperature graph the way they intersect determines the transition behavior. Wherever they cross the
ratio of the partition function per molecule goes from 1 * to 17 causing a translocation (see Section 3.1).
With a little effort we obtain

R1 — HI1; R2 — H2
R1 — H2; R2 — HI

R1 — R2 — HI; Rl — R2 — H2; R1 — Hl — H2
R2 — Rl — H2; R2 — Rl — HI1; R2 — H2 — H1

R1 — R2 — H1 — H2; R1 — Hl — R2 — H2; R2 — R1— R1 — H2
R2 — Rl — H2 — HI, R2 — H2 — R1 — HI; R1 — R2—H2—HI

R1 means random coil in Region 1, H2 helix in Region 2, etc. There are 16 different ways for the system
to behave as we cool, depending on the choice of the two sets of molecular energy parameters for
Regions 1 and 2. Several of them are quite remarkable. R1 —R2 — H1 — H2 means that we start at high

- temperature with a random coil inside Region 1. On lowering the temperature the polymer translocates
to Region 2 as random coil. Then it shuttles back to Region 1 as a helix and finally on lowering the
temperature for the third time it goes back into Region 2 as a helix. Obviously there can be much
shuttling back and forth across the membrane. In the above it was assumed that the helix is the low
temperature form (no inverted transitions) on both sides of the partition. . _
_‘The translocation transitions are sharp while the transitions on one side of the partition may or may not
be sharp depending on the molecular energy parameters.

3.1.5. A comment on the scope of the coupled pair problem

There are three factors which greatly enlarge the scope of the problem beyond what we have already
indicated.

First, the kinetics of these coupled systems have been neglected, partially because of the great
difficulty associated with solving such systems, but also partially because the format of discussion
(our paradigm), i.e. the matrix had to await the discovery of the ten transitions. These kinetics, including
pattern formation which can occur at higher growth rates, display richness of structures that have not yet
even been classified.

Second, in reality a coupled pair may represent many different transitions. The liquid crystal to crystal
transition has (230 space groups) X (1 nematic + lcholesteric + 7smectic) = 2070 different a priori
possible coupled pairs. Many of these can be ruled out as equilibrium states but not as metastable states.
They cannot be dismissed without first examining them for their viability.
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Third, we should mention that the kinds of molecules that can participate in these transitions is also
vast since we can make copolymers and the number of these is exponentially large in n, the degree of
polymerization. This combination of many kinds of molecules and many kinds of transitions offers the
opportunity for determining and tuning structure via chemical change and conversely.

These observations have importance both in technology and in evolutionary biology.

3.2. The general case displays the vastness of the problem

In Section 3.1 which deals with coupled pairs of transitions we had 10 transitions taken two at a time
(2C1o = 45 pairs). For a triplet of transitions we would have ;C;y = 120 triplets of which we have no a
priori knowledge and therefore need to be examined. The total number of possible transition systems that

_need to be examined for viability and possible technology opportunities includes couplings of all orders.

1Cio +2C10 +3Cpo + -+ = (1 + 1) — 1 =1023. (39)

When this number is compared to the small number of cases that have actually been studied we see thata
vast amount of work remains. The number 1023 is actually a lower bound, as we know from Section
3.1.5, because for example the transition from isotropic to nematic could. equally as well been a
transition to the cholesteric or any one of the 7 plus smectic phases, or it could have skipped the nematic
phase and crystallized into one (at least several) of the 230 crystal space groups.

4. Kinetics and pattern formation enlarge the scope of the problem

Every equilibrium phase that comes to be involves the kinetics of creation of that phase. This fact

. underlines the importance of kinetic studies. Most kinetic studies lag far behind the equilibrium treat-

ments. This is to be expected since the kinetic problems can be orders of magnitude more difficult, but

" some progress is being made. Sometimes the equilibrium phase destroys all memory of kinetics but in

polymers it is often not the case, as we see below in Section 4.1 where the basic mathematics of one- -

dimensional crystallization is outlined. Additionally we discuss in Section 4.2, Levinthal’s paradox

which, if it were not resolvable, would obviate all statistical mechanical treatments of large polymers.
Pattern formation is discussed in Section 4.3.

4.1. An example from the list of ten: polymer crystallization

The polymer crystal phase retains memory of its kinetic history in its lamellar thickness (LT) which is
frozen in indefinitely if the polymer crystal is formed under conditions of large supercooling. To
determine LT we need to kinetic theory of crystallization. As mentioned previously in Section 2. The
basics of this is the kinetics [68,69] of 1D crystallization which we now describe.

Fig. 14 describes the model on which we make our calculations. The rate constant for adding a
polymer stem to the growing crystal strip of length j is a; while the rate constant for taking off the
Jth stem is ;. From the principle of detailed balance we have

o+ 1 = exp(—B(n — &) (40)
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Free Energy

1 2 3 4 5 6 7 8 9 10
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Fig. 14. A free energy diagram for strip growth on the perimeter of a lamella crystal (Regime I). The forward and backward rate
constants for the first stem are ag and 8, while the rate constants for all subsequent stems are o and . The nucleation rate i is
compounded from these four rate constants. See text. The strip completion rate g is proportional to (a — fB). -

which relates the rate constants to molecular energetics®. If we have Ny places onto which we can
nucleate a polymer (begin to grow a 1D strip of crystal) then the growth equations are

dNo/dt = —(aoNo — BiN1)
dN,/dt = (agNp — BiNy) — (aN; — BN3)

dNj/dt = (aNj-; — BN) = (@N; = BNjp1),  j=2t0 1)

where we have allowed the rates for nucleation, o and B, to differ from the growth rates a and 8. There
are many approaches to solving these equations for the nucleation and growth of 1D strips of polymer
crystals. A method that gives good physical insight is to write down the continuum version of Eq. (41) by

expanding N;(t) = N(x,¢) in a Taylor series to obtain

" ONIot = DPNIax* — vaNIdx, D= (a+ B)(Ax)*12, v=(a— B)Ax. . (42)
The Green’s function for this equation
N(x,t) = (4nD~'exp(—(x — v)/4Dr) ‘ 43)

shows that an ensemble of 1D crystals each of length x grows with a mean velocity v while the variance

in crystal size grows as 4Dz.
A particular time independent solution of Eq. (41) called the flux determined solution is of great

utility. If dN;/dr = 0, except for Np and N, we have
S; = (aN; — BNj+1) = So, j=0tov—1. (44)

% The relevant energies are the bulk free energy, the lateral surface free energy, and the fold-surface free energy.
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Multiplying tbie S; by (Bla)’ and adding together each of the equations we obtain

So(l = (Blo)"Y(1 = Bla) = apNo + (B — BN, — B(Bla)”™'N, (45)
while if we add together all equations but the first we have
So(Bla)(1 — (Bl)” (1L ~ Bla) = BNy — B(Bla)"™'N,. (46)

Eliminating N from these two equations we obtain for the case where v is large and N, is finite when
Bla < 1 (the growth mode)

So = ap(a — B)Np/(a — B + By) 47)
while Eq. (46) itself gives
*So = Ny(a — j@ (48)
so that from E%q (44) we obtain
Niyy ‘for v=1. (49)

This is the pur -ﬂux determined-solution (PFDS) and Eq. (47) gives the rate at which nuclei are formed,

or equivalently, the rate at which we must augment the nucleation sites to keep Ny a constant. With both
the growth rate (a — ) and the nucleation rate Sy known the problem of 1D crystal growth is solved. The
PFDS generalizes the observation of Eq. (4) that the pulse of material drifts or grows with velocity v.

These equations have been used to derive formulas for polymer crystal growth [15,16,68,69]. The PEDF
displays a first-order transition at the point & = 8 which from Eq. (40) is determined by the chemical
potential of the solution and the energy of accretion ¢,

The above PFDS exists whenever the system is not clamped at some » by fixing the value of N,. In the
general case when we have clamped the system by fixing Ny and N, steady state solutions may not exist
and-the methods of Lyapunov (Liapunov) need to be employed to determine stability.

Several gen rahzauons of these results should be mentioned. Frank and Tosi [16] give the PFDS for

general a,, B,. Lauritzen et al. [68,69] treat the case where the units being added can be different - -

species. This complicates the problem considerably because the rate constants depend on both what
species is being added and to what specxes we are adding. Also, in the process of unzippering one
exposes what was already laid down. N which is the number of chains of length v which have species k
at the terminu no longer adequately characterizes the chain. One must express the problem in terms of
the variables P¥ which is the number of chains of length ¥ which have species k at the terminus and
species j just beneath it at location » — ‘1; and so on. By treating polymers in various stages of
incorporation into the crystal lamella as being different species one is able to solve the problems of:
(1) varying lamellar thicknesses within the same lamella; (2) finite molecular weight [17,18,69]; (3)
cocrystallization of polymers of different molecular weights [19]; (4) varying degree of crystallinity [69]
and; (5) the amount of adjacent re-entry [69].

4.2. Levinthal’s paradox, topological dereliction and metastable states
Levinthal’s paradox: Suppose we have a polymer of 100 monomer units and calculate the number of

configurations |available to it. A reasonable lattice model estimate [162] is 5'%. If the monomer units
move librate at a rate of 10'*/s then it is easy to show that a given configuration chosen at random would
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be visited about every 10* years. Levinthal’s paradox consists in the observation that many globular
proteins of this degree of polymerization achieve their globular form in seconds to hours rather than in
times greater than the age of the universe [163]. The paradox for globular proteins can be alleviated in
several ways. The first way is to recognize that the collapsed phase is not a compact state—it can be a
somewhat open structure so that the search for the globular state can take place among the states of the
collapsed Iphase which are orders of magnitude less in number than the number of states constituting the
expandedpolymer.

The second way is to recognize that states that are of lower energy appear with higher probability
because of Boltzmann’s law. Let us use a simplified model of the bond energies by assuming that one of
the five monomer states has an energy weight of exp(— BA¢) while the other four have a weight of 1. The
fraction of time that the polymer is in the lowest energy state is.

f = (exp(BAe)[exp(BAe) + 41)'P (50)

which is to be compared to 5719 ~ 10770 were there no energy preferences. For very reasonable values
ofAg, f =270 = = 1073% which is 40 orders of magnitude less. Given this calculation, there is no doubt
that globular proteins are among the low energy states.

There is kind of energy funnelling going on as can be seen by reference to Fig. 14 (crystal free energy
landscape). The equation that describes the roaming of a phase point in this 1D landscape is the diffusion
equation with drift Eq. (42) (chromatography eq). If the wells lay horizontal then the time of escape from
a point placed initially in the middle varies as the square of the number of wells but if there is a linear
drift in energy levels (a descending stairway) as is shown in Fig. 14 (chromatography eq) then the escape
time is proportional to the number of wells. This funneling can also reduce the collapse time by orders of -
magnitude. A paper by Zwan21g et al. suggested a resolution of the Levinthal paradox along these lines
[164].

Another way to avoid the Leventhal paradox is to have a small degree of polymerization (DP) to begin
with, since collapse times are exponential in the DP. This suggests that globular protems are never bigger
than they need to be.

Finally, globular proteins can be made by putting together globular protem pieces each of which
because of their small DP were produced quickly. Insulin (two pieces) and hemoglobin (four pieces)
seem to be examples of this.

Topolagical dereliction: If we speak in terms of energy or free energy landscapes it is plain that there
is much structure to this landscape’. The intense study of protein collapse has shown that many times the
chain gets hung up or trapped into a state called glassy by some and metastable by others. These are low
energy states which can be exited only by climbing energy or entropy barriers. The barriers can be so
high. that as a practical matter exiting never happens. The process of an isolated polymer becoming
trapped in the non-equilibrium regions of its energy landscape is called topological dereliction (TD) by
Muthukumar [165]. It is obvious that we can classify proteins into those that suffer TD and those that do
not. A rough free energy landscape would favor TD while a smooth free energy landscape favors true
minima. TD is also a function of temperature. '

Metastable states: Cheng has shown through morphological studies that there are many metastable
crystalline morphologies that are quite persistent [138] How they come to be and persist are kinetic

5 The energy surface is a highly convoluted function of the roughly 10% position coordinates. 1t consists of many deep wells
separated by ridges and peaks. The motion of the phase point on this surface determines the kinetics and metastability.
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questions. One must also ask how they relate to the surface wetting phases that are a necessary adjunct to
bulk phases.

4.3. Pattern formation

The study of pattern formation is still in its infancy. Spinodal decomposition in two component
solutions has been extensively studied [166] but the treatment for a three (and more) component system
is extremely difficult. Even more important is the coupling of spinodal decomposition to chemical
reactions. The Belosov-Shabotinsky reaction [167] which is a chemical reaction within one phase
can be considered to be an example of pattern formation in a one-phase system. In general, chemical
reactions can couple to spinodal behavior interestingly [168].

One need not have spinodal decomposition in order to have patterns. Nucleation and growth into a
supercooled medium results in snowflakes, for example.

Each of the ten phases and each of the 45 coupled pairs should be examined for pattern formation.
Generally one expects pattern formation to occur at the higher growth rates.

It is already useful to have the ten phases plus the 45 coupled pairs as a scheme of class1fy1ng anewly
observed pattern. :

4.4. Added complications arising from the kinetics for coupled pairs of transitions

About the only thing I have discovered here is that there will be many complications. For definiteness
let us consider a polymer collapsing near a surface. First, there are initial conditions to worry about. How
far is the polymer from the surface and what state of collapse is it in initially? Second, in the absence of
external forces the rate of collapse and the rate of approach to the surface are different. Third, in the
presence of external forces the rates of collapse and approach are different. Fourth, these complications
need to be discussed in the context of spatial as well as temporal variations. It is suggested that the
present state of understanding is so weak that computer modeling and experiments are needed to guide
whatever theory may be possible. Nevertheless the subject is mentioned here in an attempt to circum-
scribe the problem of phase transitions in polymers. Sections 24 make it quite plain that the scientific
community, taken in toto, has been merely strolling around the edge of a field containing a vast number
of problems involving polymer phase transitions.

5. Size and shape limitations on the transitions

We must inquire into the limits and controls on the size and the shape of our phases because we will in
fact always be dealing with finite systems.

Chemistry is an obvious control. By adjusting chemical potentials the size of the ﬂnal product as well
as the rate of formation can be controlled. Controlling the amount of material available obviously limits
phase size as does also material rejected from the growing phase. Time dependent variation of the
chemical potentials is an important multi-parameter control variable.

The molecular shape can control the final shape and size of the product [169]. An example is tobaco
mosaic virus (TMV). The globular proteins form a tight helix of 17 globular proteins per turn of the
helix. The width of the cylindrical TMV is completely determined by the forces and the shape of the one
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kind of globular protein which comprises the helix, and the length of the cylinder is the same as the
length of the RNA threading the core.

A given globular protein has a variety of shapes possible to it. We must be open to the possibility that
after a group of proteins assemble to form a structure that there is an annealing of the structure caused by
a shuffling of the internal structure of the globular protein comprising the structure. Another method of
stabilizing the final structure is by cross-linking or fusing together proteins.

Strain-limited growth also serves to limit the size of crystals. For example, a growing twisted crystal
ribbon grows at a finite width and thickness because the strain build-up at the crystal edges arising from
the twist raises the strain energy sufficiently high that the free energy difference between crystal and
solution changes sign thereby causing the lateral growth to cease.

6. Self-healing systems

A self-healing material is a material with structure such that if its structure is destroyed or
damaged it can reconstitute itself by incubation at fixed temperature or by annealing cycles of
temperature, pressure, and chemical potentials. Self-healing materials are self-assembling struc-
tures whose structures represent stable thermodynamic phases. In equilibrium thermodynamic
systems a cycling in time of the intensive variables temperature 7, pressure P, and the chemical
potentials u; can result is healing of materials. A few examples, not restricted to - polymers,
illustrate the range of possibilities.

6.1. Examples

1. Ice skating rink: After hard use the top layer of ice is melted and then refrozen, thus renewing the
surface for the next day’s activities. Only temperature cycling is involved.

2. Shape memory alloys: Imagine a bird cage made from a metal shape memory alloy. After an
encounter with a prowling cat the cage can be distorted indeed. Not to worry; a temperature cycle
will restore the shape of the cage. The bird should be removed first.

3. A covalently cross-linked amorphous polymer above its glass temperature is a rubber and cuttmg
through it with a knife results in permanent injury. But if the cross-links are hydrogen bonds a cut can
be erased because the hydrogen bonds can reform. Green slime and silly putty owe their strange
properties to renewable cross-links of some kind.

4. The shiny covering on some vinyl floor tiles is a material not far removed from its glass temperature
that has both covalent and hydrogen bonding cross-links. Small scratches will partially heal through
the reforming of the hydrogen bonds thereby partially renewing the material.

5. The boundary between the notions of self-healing and self-assembly is not distinct. TMV can be
disassembled and then reassembled in solution. We call this process self-assembly, but it can be
viewed as self healing as well.

6. One can have a self-healing system as well as a self-healing material. An electrolytic capacitor is an
example of a self-healing system. After a breakdown due to a surge of high voltage the electrolyte
redeposits an oxide coating on the metal electrodes thereby renewing the system.

7. Item 6 uses self-healing materials to renew the system, but a system can be functionally self-healing
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and contain no self-healing material. An example is a relay station which when the main relay is
damaged automatically throws a new relay in its place.

8. A drag-reducing polymer that is also a living polymer (in dilute solution) is a self-healing system.
Under shear and extensive flow conditions the polymer may be degraded but after a quiescent phase it
renews itself.

The whole point of this section is that since we have so many thermodynamic phase transitions we
should be alert to the possibility of self-healing of these phases as a technology opportunity.

7. Biological self-assembly

“7.1. Definitions and examples
Reversible self-assembly: Experimentally one has reversible self-assembly if one can take a structure
from a cell or from a part of a living thing and (1) dissolve it in solution so that it loses its structure, (2)
reconstitute it, (3) reintroduce it into the cell or living thing and (4) it has recovered its function. We take
these four steps to be the test of reversible self-assembly. Some examples of this kind of self-assembled .
structures are:

1. Tobacco mosaic virus: This is now a textbook example [134,170]. TMV consists of one kind of
globular protein wound in a helix about an RNA strand. In a solution of proper pH and ionic strength
the one kind of globular protein comprising the helical sheath winds about the central RNA strand.
For other ranges of pH and ionic strength the helical sheath can form without the RNA strand.

2. Polymerization of g-actin into the f-actin strands.

3. Hemocyanin: These copper containing molecules which transport oxygen in the blood in some of the -
snails and stuff do not travel singly but rather they bundle into small crystals of about 120 molecules.
They have the shape of short cylinders [171]. Presumably the bundling allows the blood to flow
easier. :

4. Microtubules: Along with f-actin microtubules provide the scaffolding of cells, maintaining their
shape and transporting materials within the cell [134,170]. They are also involved in cell division
(mitotic spindle) and the construction of cilia and flagelia.

5. Globular proteins [134,170].

Irreversible self-assembly: Globular proteins are of two kinds. (1) Those without chemical cross-links
bridging sidegroups. These are the completely reversible globular proteins. (2) Those with chemical
cross-links, usually disulfide bonds between cysteine sidegroups, may be irreversible. This introduces
the idea that irreversible chemistry can be involved in the process of self-assembly and forces us to
expand the notion of self-assembly to include such systems. Examples:

1. Triple-stranded collagen molecules are formed by the assembly of three larger procollagen molecules
whose end portions are then cleaved off to form the triple-stranded collagen molecule {134,170].
Another kind of irreversible self-assembly can occur when geometric structures (templates) are
involved in the self-assembly process. Examples:

. Formation of a protein within a ribosome. Here both chemistry and geometry are involved [134,170].

. Chaperon systems [172]. Here helper molecules are needed in the construction of a structure but are

W N
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not part of the final structure. For example, the placing of DNA into the core of a virus usually
requires helper molecules.

In the remaining subsections we shall be concerned with mainly reversible self-assembly.

7.2. Classification scheme for a catalogue of self-assembled structures

We list all of the elements that allow us to place the self-assembled item into this or that category of
the classification. Classifications are useful for what they contain as well as for what they do not contain.
A missing item in the classification suggests a search, either for the item, or for a new classification. The
classification categories are (as of this date and subject to improvement)

1. Classification of SA as to which kingdom, phylum, class, order, family, genus or species it exists in.

2. How does SA relate to the genetic code? What are the genes involved in the particular SA process.

3. Self-assembly inside the cell versus SA outside the cell. Examples of SA outside of the cell are sea
shells, insect exoskeletons, collagen, silk, hair and horn, haemocyanins.

. What tissues contain the SA structure?

. One step SA versus several step SA. A complexity measure of SA might enable us to differentiate

between primitive and recent evolutionary successes.

. The number of different polymer transitions involved in the particular SA process.

7. Reversible versus irreversible SA systems. Covalent chemical reactions induce irreversibility, as do

also certain geometrical templates.

. Does the self-assembly require chaperon molecules?

9. Chemical annealing: after formation a SA structure can become more stabilized by a motion to
lower free energy by a kind of shuffling (aging) of its parts.

10. Is the SA structure stable or metastable equilibrium?

11. The relevance of kinetics and/or pattern formation in the particular SA system. The making of a SA
structure is like the playing of a symphony. The instruments are the various phase transitions and
their expression in time is like the playing of notes. Each SA structure is a musical piece.

12. The relation of SA to hierarchical structures. Rat tail tendon is an example of a 7 level h1erarchy

13. The kinds of molecules involved. Which proteins, RNA DNA, sugars, other molecules are
involved?

14. Classification of SA systems as to functlon Regulatory or structural.

15. Classification as to the kind of chemical control. What is controlling the size of the SA structure"
The location? The time of expression?

16. Tissue and organ formation as SA.

17. Developmental biology as SA.

18. Other classification distinctions not yet envisaged.

) wn A

o0

7.3. The catalogue

We list this heading for completeness of our overview. Forming a sensible and complete catalogue
will take vears. A beginning notion of such a catalogue can be gleened by collecting the examples
described in Refs. [134,170,171]. Some of the items in the catalogue will be: (1) the many globular
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proteins; (2) hair, nails, silk, horn, feathers, seashells; (3) collagen; (4) DNA and RNA; (5) the many
viruses; (6) microtubules, cilia and flagella; (7) hemocyanin and; (8) membranes.

7.4. Diseases of self-assembly

Again, we list this heading for completeness of our overview. Forming a sensible and complete
catalogue will take years. A listing would help in understanding how control mechanisms work. Perhaps
then the disease can be controlled. A list of SA diseases would include sickle-cell anemia, phi cell body
cancers, scleroderma, elephant-man disease, other collagen diseases, MS, prion diseases, and others.
Viewing a disease as a mistake in the self-assembly process might offer insights into a cure.

” 8. Self-assembly in technology

We again list this study area for completeness. Just as in the biological case one first needs a basis for
classification along the lines of Section 7.2 and one then needs to make a catalogue of actual industrial
examples. Because the examples will be catalogued according to the classification there will per force be
vacancies (missing entries) in the catalogue which should correspond to technology opportunities.
Viewing technology under the paradigm-structure is phase transitions and processing is phase transition
kinetics-should provide new insights, especially in polymer technology since there are five additional
phase transitions over and above those of other materials and since there is an addltlonal conjugate pair
of thermodynamic variables (chain extension and the force on a chain).

8.1. Classification scheme for a catalogue

. Reversible versus irreversible SA systems. Covalent chemical reactxons induce irreversibility.

. One step SA versus several step SA. :

. The number of different polymer transitions involved in the pamcular SA process.

- The relevance of kinetics and/or pattern formation in the particular SA system. The making of a SA
structure is like the playmg of a symphony. The instruments are the various phase transitions and
their expression in time is like the playing of notes. Each SA structure is a musical piece.

. The relation of SA to hierarchical structures.

. The kinds of polymer molecules involved.

. Classification of SA systems as to function.

- Classification as to the kind of chemical control. What is controlling the size of the SA structure?
The location?

9. Chemical annealing: After formation of a SA structure can become more stabilized by a motion to -
lower free energy by a kind of shuffling (aging) of its parts.

10. The size of the structure(s) nano, micro, macro?

11. Other classification distinctions not yet thought of.
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8.2. The catalogue

We list this heading for completeness of our overview. Forming a sensible and complete catalogue
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ears. Some of the items in the catalogue will be: (1) microporous glass bands; (2) nanotech-
terials, see below; (3) melt-spun semi-crystalline polymer fibers; (4) flash spinning where the
1 volatile vapor; (5) fabrication of thermoplastics; and (6) thin films and membranes.

echnology

embly is one route to nanostructures. Some examples and observations:

opolymers offer the opportunity of fabricating on a nanoscale spatially regular arrangements
lla, cylinders or spheres. The scheme is to make the block copolymer and then leach out one of
ponents, or perhaps decorate one of the components, or perhaps add a solvent which isolates
vidual layers, cylinders, or vesicles; etc. Additionally, any of the bicontinuous phases in the
ations of soaps and of polymers mentioned in Section 2.2.5 is a candidate for fabrication into
ictures.

anes, either single or in multiple stacks, tubules, which are membranes rolled up into scrolls,
icles and micelles are each nanostructures.

ructures can arise in the formation of crystals or liquid crystals.

r blends can display spinodal decomposition on a micro-scale. _

the five kinds of phase transitions that may occur in the isolated polymer are occurring on a
le since the molecules themselves are nanoscale objects.

bservations suggest that the equilibrium, kinetic and pattern formation aspects of the ten
bolymer phase transitions and the thousands of possible coupled transitions (see Section 3)
some utility to microtechnology and nanotechnology.
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ng polymer science on such a grand and even noble scale as we have done we must be careful

not to claim too much. We should not fall into the fallacy of believing what we are doing is the only thing

or the mos
imbedding

the implica

physics. H
end. The p

put into the

out indefin

is advancin

The foll

automata, §

non-linear

determinist
from this Ii
self-assem!

Finally,

 important thing that exists. For this reason it is useful to circumscribe our development by
it in the larger notion of complexity physics. Complexity physics is the science of deriving all
tions of the basic laws of physics. We are thought to be close to deriving the basic laws of
pwever when this happens it will not be the end of science. Complexity physics will never
roof of this statement lies in the observation that the number of initial conditions that can be
equations of motion are infinite and therefore inexhaustible-the tree of knowledge branches
tely. Indeed complexity physics seems to be entering into a more complex phase-technology
g in all directions. -

owing abbreviated list of topics in complexity physics circumscribes our work. Cellular
ymmetry breaking, synergetics, hierarchical structures, emergent reality, pattern formation,
equations (limit cycles, strange attractors, solitons), neural nets, Kaufman nets, localization,
ic chaos, fractals, autocatalysis, symbiosis, chemotaxis, evolution, nanotechnology. It is clear
st that phase transitions in polymers is only one aspect of the science of complexity and that
ply arising from polymer phase transitions does not exhaust all of self-assembly.

we would like to suggest that all evolved life-forms must necessarily be polymeric. The fact of
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life on Earth shows the condition is sufficient, but we wish to show it is necessary as well. Although this
hypothesis is strongly believed by the author, only a plausibility argument is given.

Let us order all classes of materials by their complexity. Starting from the most complex we first have
polymeric organic molecules, then non-polymeric organic molecules, and lastly materials that are non-
organic. Life-forms need (1) a certain minimal complexity of form and function, (2) the ability to
produce many different kinds of forms often and reproducibly and, (3) an ability to transmit all the
information necessary to the forms and functions characterizing the life-form. These three conditions
can be achieved only by polymer molecules engaging in the 10 classes of phase transitions described in
this work. That is to say, (we presume) the five transitions unique to polymers are necessary. The non-
polymer organics do not have this possibility, while the non-organics simply do not have the necessary
complexity because non-organic polymers are not nearly as numerous nor are they very stable.

A corollary of the above argument is that mechanisms of evolution cannot be understood without first

“understanding polymeric self-assembly.

10. Discussion

We have in this paper championed the view that self-assembly in polymer systems is basically nothing
more or less than polymer phase transition phenomena. To establish this we first needed to know what
phase transitions were available to polymers. We found ten such transitions; five within the isolated
polymer molecule and five within collections of molecules. The first five are unique to polymers.

Polymers have a richness of structure that does not exist in any other class of materials because: (1)
the number of chemical species in polymers is exponential in the chain length; (2) there are ten classes of
phase transitions; and (3) the phase transitions can combine in pairs, triplets etc. to form thousands of (a
priori possible) structures.

This extreme richness of possibilities has obstructed our view. Sometimes one does not see the forest
for the trees. Instead of being like a bird that always lives in one tree, never straying far from it, we have
sought, in intention at least, to soar above the canopy of the forest. This overview-allows us to see the
interrelations among the transitions and to understand polymer self-assembly as being basically nothing
more than polymer phase transition phenomena. We believe that this manuscript contains an overview of
the ten polymer transitions and especially of the interrelationships among the transitions that does not
exist anywhere else. This statement in no way implies that we are anywhere near solving the many
problems of self-assembly. Rather our classification schemes show that many thousands of person-years
of work remain. It is just that we now have an overview and even a paradigm on which to base our .
discussions. The paradigm is that polymer self-assembly is the expression in time and space of combi-
nations of the various polymer phase transitions.

In Section 2 an explanation was given for the occurrence of each of the ten transitions. In Section 2.1.1
we explained why the isolated polymer shows an abundance of phase transitions: essentially, the
connectedness of the monomers creates the phase transitions! A significant result is that four of the
five isolated molecular transitions can be treated and solved exactly. The treatments, being simple, can
be understood by any undergraduate or graduate student who has had a standard statistical mechanics
course. The author is aware of no other field that displays so many thermodynamic phase transitions that
can be solved exactly.

In Section 2.2.2.it was shown that the isotropic to nematic transition in lyotropic liquid crystals has the
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same root cause as the glass transition in bulk semi-crystalline polymers. The transition in both cases
occurs because of the drastic decrease in configurational entropy. For liquid crystals: the number of ways
to arrange rigid rods in space is concentration dependent. As the concentration is raised one reaches a
concentration beyond which the rods can no longer pack at random. They are frustrated by their
neighbors. Beyond this critical concentration some of the molecules must align. For glasses: as we
lower the temperature of a bulk polymer consisting of semi-fiexible molecules the molecules stiffen and
as a result of the increasing packing difficulties a temperature is reached at which each molecule is
frustrated by its neighbors in its attempt to achieve a Boltzmann distribution of shapes. This point of
frustration is called the glass temperature. It occurs when the configurational entropy reaches a critically
small value (see Fig. 11).

In Section 3 we discussed the possibility of a large number of coupled phase transitions. The number
is found to be in the thousands. Very few of them have been investigated in any systematic way. The
opportunities for research then are as large as the number of transitions. Examples are given of how
coupled pairs of transitions model self assembly in biology and in technology.

Section 4 was to remind us of the importance of kinetics. As one expects, the kinetics are less well
developed than the thermodynamics. One dimensional crystallization (polymerization) which forms the
mathematical base for polymer crystal growth theory is discussed in some detail. Except for crystal-
lization, kinetic theories lag far behind their equilibrium counterparts for each of the other nine classes of
transitions, as do also theories of pattern formation.

The next five sections are bare-bone outlines. They are given for completeness of the structure of the
overview, not because they have been built on in any deep or systematic way. Section 5 discussed size .
and shape limitations on the transitions. The subject is important for biology and nanotechnology where
the phases can be quite small. Section 6 discussed self-healing, with examples. Surely there exist many
opportunities to invent materials that renew themselves, if as we maintain, self-assembled states are -
states of stable or metastable equilibrium. Section 7 discussed the important case of biological self-
assembly. The need for a catalogue of self-assembled structures is stressed and a classification scheme is -
suggested. The need for a catalogue of diseases of self-assembly is also noted. Section 8 discussed
polymeric self-assembly as a technology opportunity. Finally in Section 9 we discussed the relationship
of models of polymer phase transitions to the concepts of complexity physics, and we make two
speculative statements; one to the effect that all living beings must necessarily be polymeric, and two
that understanding polymer phase transitions is a prerequisite to understanding evolution.

Acknowledgements

I wish to thank C.M. Guttman for reading the manuscript. A comprehensive development of the
subject of this manuscript requires a book (at a minimum). Such a work would include many references
omitted in this paper because of space limitations. I apologize to the researchers, many of them friends,
who would be referenced in the larger work.

References

(1] Flory P§. J Chem Phys 1941;9:660.
{2] Flory PJ. J Chem Phys 1942;10:51.



374 . E.A. Di Marzio / Prog. Polym. Sci. 24 (1999) 329-377

{3] Huggins ML. J Chem Phys 1941;9:440.
{4] Huggins ML. J Phys Chem 1942;46:151.
[5] Huggins ML. Ann NY Acad Sci 1942;43:1.
[6] Miller AR. Theory of solutions of high polymers. Oxford: Clarendon Press, 1948.
{7] Onsager L. Ann NY Acad Sci 1949;51:627.
[8] Flory PJ. J Chem Phys 1949;17:303.
[9] Di Marzio EA. Macromolecules 1984;17:969.
[10] Di Marzio EA, Briber R. Marzio. Macromolecules 1995;28:4020.
[11] Gibbs JH. J Chem Phys 1956;25:185.
[12] Gibbs JH, Di Marzio EA. J Chem Phys 1958;28:373.
{13] Di Marzio EA, Gibbs JH. J Chem Phys 1958;28:807.
[14] Kauzmann W. Chem Rev 1948;43:219,
[15] Lauritzen Jr. JI, Hoffman JD. J Res NBS 1960;64A:73.
[16] Frank FC, Tosi M. Proc Roy Soc (London) 1961;A263:323.
[17] Sanchez IC, Di Marzio EA. J Chem Phys 1971;55:893.
[18] Sanchez IC, Di Marzio EA. Macromolecules 1971;4:677.
[19] Sanchez IC, Di Marzio EA. J Res NBS 1972;76A:213.
[20] Tobolski AV, Eisenberg A. J Am Chem Soc 1959;81:2302.
[211 Tobolski AV, Eisenberg A. J Am Chem Soc 1960;82:289.
[22] Tobolski AV, Eisenberg A. J Coll Sci 1962;17:49.
[23] Wheeler JC, Kennedy SJ, Pfeuty P. Phys Rev Lett 1980;45:1748.
[24] Wheeler JC, Pfeuty P. Phys Rev A 1981;24:1050.
{25) Zimm BH, Bragg W. J Chem Phys 1959;31:526.
[26] Gibbs JH, Di Marzio EA. J Chem Phys 1959;30:271.
[27] Zimm BH. J Chem Phys 1960;33:1349.
[28] Applequist J. J Chem Phys 1969;50:609.
[29] Di Marzio EA, McCrackin FL. J Chem Phys 1965;43:539.
[30] Rubin RJ. J Chem Phys 1965;43:2392.
[31] Rubin RJ. J Chem Phys 1969;51:4681.
[32] Di Marzio EA, Mandell A. J Chem Phys 1997;107:5510.
[33] Ekwall P, Mandell L, Fontell K. Mol Cryst Liq Cryst 1969;8:157.
[34] Luzzati V, Reiss-Husson F. Nature 1956;210:1351.
{35] Luzzati V, Reiss-Husson F. Adv Bio Med Phys 1967;11:87.
{36] Luzzati V, Mustacchi H, Skoulios A, Reiss-Husson F. Acta Crystallogr 1960;13:660.
[37] Thomas EL, Lescanec RL. Phil Trans Roy Soc 1986;A348:149.
{38] The values of 6; are derived in Section 2.1.3.
{39] Tolman RS. Principles of statistical mechanics. London: Oxford University Press, 1955.
[40] Kubo R. Statistical mechanics. New York: North Holland, 1971.
[41] Poland DC, Scheraga HA. J Chem Phys 1966;45:1464.
[42] Truesdell C. Ann Math 1945;46:144.
[43] Poland DC, Scheraga HA. Theory of the helix—coil transition. New York: Academic Press, 1970.
[44] Kittel C. Am J Phys 1969;37:917.
[45] Sanchez IC, editor. Physics of polymer surfaces and interfaces Boston: Butterworth-Heinemann, 1992,
[46] Di Marzio EA. In: Sanchez IC, editor. Physics of polymer surfaces and interfaces, Boston: Butterworth-Heinemann,
1992. pp. 73. '
[47] Scheutjens JMHM, Fleer GJ. J Phys Chem 1969;83:1619.
[48] Scheutjens JMHM, Fleer GJ. J Phys Chem 1980;84:178.
(49] Fleer GJ. Polymers at interfaces. New York: Chapman and Hall, 1994.
[50] Guttman CM, Di Marzio EA, Douglas JF. Macromolecules 1996;29:5723.
(511 Guttman CM, Di Marzio EA. In: Society Plastic Engng ANTEC Proceedings’ 95, Atlanta, Georgia, 1995, p. 2551.
[52] Feller W. An introduction to probability theory and its applications. 3. New York: Wiley, 1948.
[53] Di Marzio EA. J Chem Phys 1965;42:2101.



E.A. Di Marzio / Prog. Polym. Sci. 24 (1999) 329-377 375

[54] Skvortsov AM, Gorbunov AA, Llushin LI J Chem Phys 1994;100:2325.
[55] Klushin LI, Skvortsov AM, Gorbunov AA. Phys Rev E 1997;56:1511.
[56] Casassa EF. J Poly Sci 1967;B5:773.
[57] Balazs AC, Gemp MC, Zhou Z. Macromolecules 1991;24:4918.
[58] Balazs AC, Huang K, McElwain P, Brady JE. Macromolecules 1991;24:714.
[59] Huang K, Balazs AC. Phys Rev Lett 1991;66:620. :
[60] Douglas JF. Macromolecules 1989;22:3707.
[61] Muthukumar M. J Chem Phys 1991;94:4062.
[62] Muthukumar M. J Chem Phys 1987;86:7230.
[63] Fisher ME. J Chem Phys 1966;45:1469.
[64] Douglas JF, Nemirovsky AM, Freed KF. Macromolecules 1986;19:2041.
[65] Di Marzio EA, Guttman CM, Mah A. Macromolecules 1995:2930.
[66] Baumgartner PA, Muthukumar M. J Chem Phys 1987;87:3082.
[67] Douglas JF, Wang S-Q, Freed KF. Macromolecules 1987;20:543.
[68] Lauritzen JI, Di Marzio EA, Passaglia E. J Chem Phys 1966;45:4444.
[69] Di Marzio EA. ] Chem Phys 1967;47:3451.
{70] Greer SC. In: Prigogine I, Rice SA, editors. Advances in chemical physics, 90. New York: Wiley, 1996. pp. 261.
[71] Grosberg YuA, Kuznetsov DV. Macromolecules 1992;25:1996.
[72] Di Marzio EA, Guttman CM. J Chem Phys 1991;95:1189.
{731 Domb C. The critical point. London: Taylor and Francis, 1996.
[74] Flory PJ. In: Chapoy LL, editor. Recent advances in liquid crystallinr polymers, New York: Elsevier Applied Science,
1985. pp. 99.
[75] Nemirovski AM, Huston SE, Graham RL, Freed KF. J Chem Phys 1994;101:510.
[76] Di Marizo EA, Yang AJ-M, Glotzer SC. J Res NIST 1995;100:173.
[77] Flory PJ. Proc Roy Soc (London) 1956;A234:73.
[78} Di Marzio EA. J Chem Phys 1961;35:658.
{79] Herzfeld J. J Chem Phys 1982;76:4185.
{80] Di Marzio EA. J Chem Phys 1962;36:1563.
[81] Di Marzio EA. Polymer 1994;35:1819.
[82] Tanaka T, Allen G. Macromolecules 1977:10:426.
{83] Flory PJ, Abe A. Macromolecules 1978;11:1119. -
[84] Abe A. Flory PJ. Macromolecules 1978;11:1122.
[85] Flory PJ, Frost RS. Macromolecules 1978;11:1126.
[86] Flory PJ. Macromolecules 1978;11:1138.
[87] Flory PJ. Macromolecules 1978;11:1141.
[88] Flory PJ, Ronca G. Mol Cryst Liq Cryst 1979;54:289.
(891 Flory PJ, Ronca G. Mol Cryst Lig Cryst 1979;54:311.
{90] Peterson HT, Martire DE, Cotter MA. J Chem Phys 1974;61:3547.
[91] Cotter MA. Mol Cryst Liq Cryst 1976;35:33.
[92] Cotter MA. Mol Cryst Lig Cryst 1983;97:29.
[93] Agren GI, Martire DE. J Phys., (Paris) 1975;36:141.
[94] Alben R. J Chem Phys 1973;59:4299.
[95] Dowell F, Martire DE. J Chem Phys 1978;69:2332.
[96] Agren G. Phys Rev A 1975;11:1040.
[97} Luckhurst GR. In: Chapoy LL, editor. Recent advances in liquid crystalline polymers New York: Elsevier Applied
Science. 1985. pp. 105.
[98] Maier W, Saupe AZ. Z Naturforsch 1958;A13:564.
[99] Maier W, Saupe AZ. Z Naturforsch 1959;A14:882.
[100] Maier W_ Saupe AZ. Z Naturforsch 1960;A15:287.
[101] Brout R. Phase Transitions. New York: W.A. Benjamin, 1965.
[102] Karaz FE, Pople JA. J Phys Chem Solids 1961;20:294.
[103] deGennes PG. Physics of liquid crystals. 2. Oxford: Clarendon Press, 1974.

3



376

[104] Chand
[105] Di Ma
USDOC
[106] Toulous
[107] Di Mai
{108] Stauffer
[109] Adam
[110] Keller
[111] Keller
[112} Lauritze)
[113] Di M
{114} Guttmarn
[115] Frank F¢
_[116] Di Marz
T [117] Passagli
[118] Hillig W
{119} Hoffman
{120} Wunder
See also
{121} Khoury
335.
{122] Phillips
{123} Hammal
{124] Hammal
{125] Hammal
[126] Scott RI
[127] Han CC
[128] Roult J.
[129] Di Marz
[130] Di Marz
[131] Breiner
[132] Avgerop
[133] Lambert
[134] Alberts |
[135] Yager P
[136] Edelman
[137] Cahn JW
[138] Ho RM,
[139] Genzer |
[140] Faldi A,
[141] Zwanzig
[142] Lauritze]
[143] Moriyas|
[144] Anderso
[145] Minton
[146] Minton
[147] Minton
{148] Minton
[149] Minton
[150] Herzfeld
[151]) Hanker

E.A. Di Marzio / Prog. Polym. Sci. 24 (1999) 329-377

:jsekhar S. Liquid crystals. 2. Cambridge: Cambridge University Press, 1992.

io E.A. In: Ngai KL, Wright GB. Relaxation in complex systems. Available from the author and from NTIS,
, 5285 Port Royal Rd., Springfield, VA 22161 (1984) pp. 43-52.

e G. Commun Phys 1977;2:115.

io EA, Yang AJ-M. J Res NIST 1997;102:137.

D, Aharony A. Introduction to percolation theory. 2. London: Taylor And Francis, 1992.

, Gibbs JH. J Chem Phys 1965;43:139.

. Phil Mag 1957;2:1171.

. Rep Prog Phys 1968;31:623.

1 JI, Passaglia E. ] Res NBS 1967;71A:261.

io EA, Guttman CM. Marzio. Polymer 1980;21:733.

] CM, Di Marzio EA, Hoffman JD. Polymer 1981;22:1466.

C. In: Roberts D, Turnbull D, editors. Growth and perfection of crystals, New York: Wiley, 1958. pp. 529.

io EA, Passaglia E. J Chem Phys 1987;87:4901.

a E, Di Marzio EA. J Chem Phys 1987;87:4908.

/B. Acta Met 1966;14:1868.

) JD, Miller R. Polymer 1997;38:3151.

ich B. Crystal structure, morphology, defects. Macromolecular physics, 1. New York: Academic Press, 1976.
Vol. 2: Crystal nucleation, growth, annealing.

FA, Passaglia E. In: Hannay NB, editor. Treatise on solid state chemistry, 3. New York: Plenum Press, 1976. pp.

P. Rep Prog Phys 1990;53:549.
ker HG. Rec Tra Chim 1936;55:1015.
ker HG. Rec Tra Chim 1937;56:3.
ker HG. Rec Tra Chim 1937;56:727.
L, Van Konynenburg PH. Discuss Faraday Soc 1970;49:87.
Akcasu AZ. Ann Rev Phys Chem 1992;43:61.
J De Physique Lett 1979;40:15.
io EA, Guttman CM, Hoffman JD. Macromolecules 1981:1194.
io EA. Macromolecules 1988;21:2262.
U. Krappe U, Thomas EL, et al. Macromolecules 1998;31:135.
oulos A, Dair BJ, Hadjichristidis N, et al. Macromolecules 1997;30:5634.
CA, Radzilowski LH, Thomas EL. Phil Trans Roy Soc 1996;A354:2009.
B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. 2. New York: Garland, 1989.
Schoen PE, Davis C, Price R. Biophys J 1985;48:899 Scrolls NRI.
1 GM. Topobiology, basic books. Harper Collins: New York, 1988.
V. ] Chem Phys 1977,66:3667.
Yoon Y, Leland M, Cheng SZD, Yang D, Percec V, Chu P. Macromolecules 1996;29:4528.
f, Composto RJ. Europhys Lett 1997;38:171.
Geuzer J, Composto RJ, Dozier WD. Phys Rev Lett 1995;74:3388.
R, Lauritzen JI. J Chem Phys 1968;48:3351.
n JI, Zwanzig R. J Chem Phys 1970;52:3740.
u K. An elementary primer for guage theory. Singapore: World Scientific, 1983.
n JL. Principles of relativity physics. New York: Academic Press, 1967.
AP. J Mol Bio 1974;82:483, ’
AP. ] Mol Bio 1975;95:284.
AP. J Mol Bio 1975;95:307.
AP. J Mol Bio 1976;100:519.
AP. J Mol Bio 1976;100:542.
J. Acc Chem Res 1996;29:31 and references therein.
JS. Giamara BL. Med Hypotheses 1981;7:77.




E.A. Di Marzio / Prog. Polym. Sci. 24 (1999) 329-377 377

[152] Hanker JS, Giamara BL. In: Stoward PS, Polak JM, editors. Histochemistry: the widening horizons, New York: Wiley,
1981 chapter 7.

[153] Di Marzio EA, Bishop M. Biopolymers 1974;13:2361.

{154] Carri GA, Muthukumar M. Phys Rev Lett, in press.

[155] Ringsdorf H, Schlarb B, Venzmer J. Angew Chem Int Ed Engl 1988;27:113.

[156] Lehn J-M. Science 1985;227:844.

{157] Lehn J-M. Angew Chem Int Ed Engl 1988;27:89.

[158] Haller W. Nature 1965;206:693.

[159] Haller W. In: Scouten WH, editor. Application of controlled pore glass in solid phase biochemistry, New York: Wiley,
1983 Chapter 11.

[L60] Hood HP, Nordberg ME. US Patent 2,106,744. Vycor is pure SiO2.

[161] Di Marzio EA, Ho J. Private communication.

[162] deGennes PG. Scaling concepts in polymer physics. Ithaca: Cornell University Press, 1979.

[163] Levinthal C. J Chem Phys 1969;65:44.

[164] Zwanzig R, Szabo A, Bagchi B. Proc Natl Acad Sci USA 1992;89:20.

[165] Muthukumar M. Comp Matl Sci 1995;4:370.

[166] Binder K. In: Haasen P, editor. Material science and technology: phase transformations in materials, 5. Weinheim: VCH,
1990. pp. 405.

[167] Haken H. Chemical patterns Chapter 6. Science of structure, synergetics. New York: Van Nostrand Reinhold, 1981.

[168] Glotzer SC, Di Marzio EA, Muthukumar M. Phys Rev Lett 1995;74:2034.

{169] Fraenkel-Conrat H, Williams RC. Proc Nat Acad Sci USA 1955;41:690.

{170] Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J. Molecular cell biology. 3. New York: Scientific
American Press, 1995.

[171] Calvin M. Chemical evolution. New York: Oxford University Press, 1969.

[172] Ellis RS, van der Vies SM. Molecular chaperones. Annu Rev Biochem 1991;60:321.

[173] Timasheff SM, Fasman GD. Subunits in biological systems Part A and B. New York: Marcel Dekker, 1971.



